# Final Report



A STUDY ON THE PROPERTIES OF SOLID ADSORBENTS FOR THE DESIGN OF REGENERATIVE CO<sub>2</sub> REMOVAL SYSTEMS

# APOLLO APPLICATIONS PROGRAM ENVIRONMENTAL CONTROL/LIFE SUPPORT SYSTEM

Contract NAS 9-3541

67-1751 February 1968

(NASA-CR-150941) APOLLO APPLICATIONS
PROGRAM ENVIRONMENTAL CONTROL/LIFE SUPPORT
SYSTEMS: A STUDY OF THE PROPERTIES OF SOLID
ADSORBENTS FOR THE DESIGN OF REGENERATIVE
CO2 REMOVAL SYSTEMS Final (Airesearch Mfg. 00/98

N76-78073

Unclas 02470

Prepared for

The National Aeronautics and Space Administration
Manned Spacecraft Center
Houston, Texas



AIRESEARCH MANUFACTURING DIVISION
Los Angeles, California

#### **FOREWORD**

This report was prepared by the AiResearch Manufacturing Division of The Garrett Corporation, Los Angeles, California, to summarize and report the findings of Task B-3 of Phase IB, "Regenerative CO<sub>2</sub> Removal R&D," of Contract NAS 9-3541.

The program was sponsored by the National Aeronautics and Space Administration, Manned Spacecraft Center, Houston, Texas, and was monitored by Mr. Wilbert Ellis of the Crew Systems Division.

The study and research work was performed by AiResearch under the direction of J. P. Byrne, Program Manager. Experimental Studies were conducted by S. Steinberg, J. Littman, and R. Haug; and analytical investigations by P. Fukunaga and Dr. K. C. Hwang of AiResearch and Drs. J. Winnick, S. Davis, and L. Dell'Osso of NASA.

### CONTENTS

| Section    |                                                                                   | <u>Page</u> |
|------------|-----------------------------------------------------------------------------------|-------------|
| 1          | INTRODUCTION                                                                      | 1-1         |
| 2          | SUMMARY AND CONCLUSIONS                                                           | 2-1         |
| 3          | BIBLIOGRAPHICAL REVIEW OF SORBENT TECHNOLOGY                                      | 3-1         |
|            | Resume of Literature                                                              | 3-1         |
|            | Bibliography                                                                      | 3-4         |
| 4          | FUNDAMENTAL BASIS OF THERMODYNAMICS AND KINETICS FOR FIXED BED SORPTION PROCESSES | 4-1         |
|            | Introduction                                                                      | 4-1         |
|            | Basic Phenomena                                                                   | 4-1         |
|            | Adsorption Step                                                                   | 4-3         |
|            | Thermodynamics of Adsorption                                                      | 4-4         |
|            | Surface Kinetics and Equilibrium (Isotherms)                                      | 4-6         |
|            | Chemisorption                                                                     | 4-8         |
|            | Physical Adsorption                                                               | 4-9         |
| •          | Analyses of Adsorption Bed Dynamics                                               | 4-10        |
|            | Mass Balances                                                                     | 4-10        |
|            | Interphase Mass Transfer                                                          | 4-13        |
|            | Remainder of Interphase and Granular Particle Mass Transfer Analysis              | 4-14        |
|            | General Analytic Solution for Isothermal Sorption                                 | 4-23        |
| •          | Nomenclature                                                                      | 4-24        |
| , <b>5</b> | BASIC LABORATORY STUDIES                                                          | 5-1         |
|            | Apparatus and Experimental Technique                                              | 5-1         |
|            | Equilibrium Isotherms                                                             | 5-1         |
|            | Adsorption                                                                        | 5-4         |
|            | Desorption                                                                        | 5-11        |
|            | Equilibrium Isotherms                                                             | 5-16        |
|            | Carbon Dioxide Adsorption on Molecular Sieves                                     | 5-16        |

# CONTENTS (Continued)

| Section |                                                                        | Page  |
|---------|------------------------------------------------------------------------|-------|
|         | Water Adsorption on Molecular Sieve                                    | 5-19  |
|         | Effect of Residual Water on Carbon Dioxide Capacity of Molecular Sieve | 5-25  |
|         | Water Vapor Adsorption on Silica Gel                                   | 5-25  |
|         | Differential Heat of Adsorption                                        | 5-29  |
|         | Dynamic Adsorption Studies                                             | 5-31  |
|         | Carbon Dioxide Adsorption on Molecular Sieves                          | 5-31  |
| •<br>•  | Water Vapor Adsorption on Silica Gel                                   | 5-36  |
| ·       | Dynamic Desorption Studies                                             | 5-39  |
|         | Scope                                                                  | 5-39  |
|         | Preliminary Runs                                                       | 5-39  |
|         | Determination of Controlling Step                                      | 5-48  |
|         | Carbon Dioxide Vacuum Desorption from Molecular Sieve                  | 5-48  |
| •       | Water Vapor Vacuum Desorption from Silica Gel                          | 5-5   |
|         | Water Vapor Vacuum Desorption from Molecular Sieve                     | 5-54  |
|         | Discussion of Test Results                                             | 5-54  |
|         | References                                                             | 5- 58 |
| 6       | PROTOTYPE EXPERIMENTAL TEST PROGRAM                                    | 6-1   |
|         | Introduction                                                           | 6-1   |
|         | Water Vapor on Silica Gel                                              | 6-1   |
|         | Purpose                                                                | 6-1   |
|         | Technique                                                              | 6-1   |
|         | Test Results                                                           | 6-6   |
| •       | Discussion of Test Results                                             | 6-6   |
|         | CO <sub>2</sub> and Water Vapor on Molecular Sieve                     | 6-15  |
|         | Purpose                                                                | 6-15  |
|         | Technique                                                              | 6-15  |
|         | Test Results                                                           | 6-15  |
|         | Calculations and Water Poisoning                                       | 6-20  |



### CONTENTS (Continued)

| Section |                                                                                       | <u>Pa ge</u> |
|---------|---------------------------------------------------------------------------------------|--------------|
|         | Discussion of Test Results                                                            | 6-33         |
| 7       | DIGITAL COMPUTER PREDICTION DEVELOPMENT                                               | 7-1          |
| •       | Introduction                                                                          | 7-1          |
|         | Mathematical Model                                                                    | 7-3          |
|         | General Assumptions Made                                                              | 7-3          |
|         | Differential Equations Describing<br>Transient Behavior of an Adsorbing<br>Bed System | 7-3          |
|         | Program Description                                                                   | 7-11         |
|         | Main Program                                                                          | 7-11         |
|         | MADSOR (\$9970)                                                                       | 7-11         |
|         | STARTA (S9978)                                                                        | 7-11         |
|         | ADSORB (S9971)                                                                        | 7-11         |
|         | TSORBA (S9977)                                                                        | 7-15         |
|         | TGLCOL (S9987)                                                                        | 7-15         |
|         | HXCORE (S9991)                                                                        | 7-15         |
|         | GASTA (S9976)                                                                         | 7-15         |
|         | PRADSB (S9979)                                                                        | 7-16         |
|         | MDESOR (S9980)                                                                        | 7-16         |
|         | START (S9988)                                                                         | 7-16         |
|         | PRDESB (S9989)                                                                        | 7-16         |
|         | DESORB (S9933)                                                                        | 7-16         |
|         | TSORB (S9997)                                                                         | 7-16         |
| 9       | GAST (S9986)                                                                          | 7-16         |
|         | PKEQ (\$9992)                                                                         | 7-16         |
|         | IFN (S9981)                                                                           | 7-16         |
|         | FDEQIM (S9984)                                                                        | 7-16         |
|         | FDEQID (S9985)                                                                        | 7-17         |
|         | LAGIN2 (S9996)                                                                        | 7-17         |
|         | Main Program (S9950)                                                                  | 7-17         |
|         | Main Program (S9951)                                                                  | 7-17         |
|         | Various Options of Using the Program Package                                          | 7-17         |
|         | Program Input                                                                         | 7-18         |

### CONTENTS (Continued)

| Section  |                                                                                                                   | Page |
|----------|-------------------------------------------------------------------------------------------------------------------|------|
|          | Variables Common to Both S9973 and S9993                                                                          | 7-18 |
|          | Input Variables Required by S9973 Only                                                                            | 7-2  |
|          | Input Variables Required by S9993 Only                                                                            | 7-2  |
|          | Determination of Constants GK and DIF                                                                             | 7-2  |
|          | Various Heat Transfer Coefficients for the Final Bed                                                              | 7-3  |
|          | Nomenclature                                                                                                      | 7-3  |
|          | Example Input and Output                                                                                          | 7-4  |
| •        | Complete Listing of Source Program                                                                                | 7-4  |
|          | References                                                                                                        | 7-4  |
| . 8      | BED DESIGN                                                                                                        | 8-1  |
|          | Bed Physical Characteristics                                                                                      | 8-3  |
| Appendix |                                                                                                                   |      |
| Α        | THERMODYNAMICS OF ADSORPTION                                                                                      | A-!  |
| В .      | FUNDAMENTALS OF MASS BALANCES AND THEIR SIMPLIFICATION                                                            | B-1  |
| C        | RESULTS OF LABORATORY ADSORPTION AND DESORPTION OF ${\rm CO_2}$ ON MOLECULAR SIEVE AND ${\rm H_2O}$ ON SILICA GEL | C-1  |
| D        | INPUT DATA FOR SIMULATING COMPOSITE BED DESCRIBED IN SECTION 8                                                    | D- 1 |
| E.       | EXAMPLE PRINTOUT DURING ADSORPTION PERIOD                                                                         | E- I |
| F        | EXAMPLE PRINTOUT DURING DESORPTION PERIOD                                                                         | F-1  |
| G        | SOURCE PROGRAM LISTING                                                                                            | G-1  |

### ILLUSTRATIONS

|   | Figure |                                                                                                                                 | <u>Page</u> |
|---|--------|---------------------------------------------------------------------------------------------------------------------------------|-------------|
|   | 4-1    | Particle Arrangement in Fixed Bed (Particles of<br>Sorbent Are Assumed to Be of Uniform Size and<br>Arrangement in Bed)         | 4-15        |
|   | 4-2    | Single-Particle Physical Parameters and Related Concentrations                                                                  | 4-16        |
|   | 4-3    | Schematic of Typical Adsorption Equilibrium Isotherm at Low Coverage (Proportionate Law)                                        | 4-17        |
| • | 5-1    | Schematic of Gravimetric Equilibrium Sorption Apparatus                                                                         | 5-2         |
|   | 5-2    | Photograph of Gravimetric Sorption Apparatus                                                                                    | 5-3         |
|   | 5-3    | McLeod Gauge (Standard) and Televac Model 2C-M<br>Thermocouple Gauge                                                            | 5-5         |
|   | 5-4    | Schematic of Dynamic Adsorption Apparatus                                                                                       | 5-7         |
|   | 5-5    | Photograph of Dynamic Adsorption Apparatus                                                                                      | 5-8         |
|   | 5-6    | Dynamic Sorption Test Bed                                                                                                       | 5-9         |
|   | 5-7    | Instrumented Packed Adsorbent Bed                                                                                               | 5-10        |
|   | 5-8    | CVC Magnevac GMA-140 Thermal Conductivity Gauge and Texas Instruments Quartz Tube Gauge                                         | 5-12        |
|   | 5-9    | Modified Desorption Apparatus .                                                                                                 | 5-13        |
|   | 5-10   | Desorption Bed with Regenerator                                                                                                 | 5-15        |
|   | 5-11   | Desorption Bed with Constant Temperature Bath                                                                                   | 5-15        |
| • | 5-12   | Equilibrium Isotherms of Carbon Dioxide Adsorption on Linde Molecular Sieve, Type 5A, I/16-india Pellets                        | 5-17        |
| , | 5-13   | Comparison of 25°C Equilibrium Isotherms of Adsorption of Carbon Dioxide on Linde Type 5A Molecular Sieve                       | 5-18        |
|   | 5-14   | Equilibrium Isobars of Carbon Dioxide Adsorption on Linde Molecular Sieve Type 5A, 1/16-india Pellets Obtained from Figure 5-12 | 5-20        |



| Figure |                                                                                                                                                                           | <u>Pa qe</u> |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| 5-15   | Equilibrium Isoteres of Carbon Dioxide Adsorption on Linde Molecular Sieve Type 5A, I/I6-india Pellets Obtained from Figure 5-12                                          | 5-21         |
| 5-16   | Equilibrium Isotherms Obtained from Isobar and Isostere Cross Plots                                                                                                       | 5-22         |
| 5-17   | Equilibrium Isotherm of Carbon Dioxide Adsorption on Linde Molecular Sieve Type 5AXW, I/I6-india Pellets at 25°C                                                          | 5-23         |
| 5-18   | Equilibrium Isotherm of Water Vapor Adsorption on<br>Linde Molecular Sieve Type 5A, I/I6-india<br>Pellets at 25°C                                                         | 5-24         |
| 5-19   | Equilibrium Isotherm of Carbon Dioxide Adsorption on Water Treated Linde Molecular Sieve Type 5A, I/16-india Pellets at 25°C                                              | 5-26         |
| 5-20   | Equilibrium Isotherm of Water Vapor Adsorbed on Davison Grade 05, 6-16 Mesh Silica Gel at 25°C                                                                            | 5-27         |
| 5-21   | Water Vapor Capacity of Silica Gel as a Function of Temperature at Various Partial Pressures, in. Hg (Equilibrium Isopiestics) as Reported by Davison Co. (Reference 5-4) | 5-28         |
| 5-22   | Differential Heat of Adsorption at 95°F Based<br>on Isoteres of Carbon Dioxide Adsorption on<br>Linde Type 5A Molecular Sieve Pellets .                                   | 5-30         |
| 5-23   | Typical Plot Obtained from Experimental Data. This is Adsorption of ${\rm CO}_2$ on Linde Type 5A Molecular Sieve Pellets at ${\rm 25}^{0}{\rm C}$                        | 5-33         |
| 5-24   | Typical Breakthrough Curve Obtained from Experimental Data. This is Percent Breakthrough of CO <sub>2</sub> from Linde Type 5A Molecular Sieve Pellets at 25°C            | 5-34         |
| 5-25   | Bed Pressure Profile for the Isothermal Vacuum Desorption of Water Vapor from Davison Grade 05, 6-16 Mesh Silica Gel at 50°C                                              | 5-40         |
| 5-26   | Bed Pressure Profile for the Isothermal Vacuum Desorption of Water Vapor from Davison Grade 05, 6-16 Mesh Silica Gel at 25°C                                              | 5-41         |



| <u>Figure</u> |                                                                                                                                                               | Page          |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| 5-27          | Bed Pressure Profile for the Isothermal Vacuum<br>Desorption of CO <sub>2</sub> from Type 5A, Linde Molecular<br>Sieve, I/I6-india Pellets at 25°C            | 5-42          |
| 5-28          | Bed Pressure Profile for the Isothermal Vacuum<br>Desorption of CO <sub>2</sub> from Type 5A, Linde Molecular<br>Sieve, I/I6-india Pellets at 50°C            | 5-43          |
| <br>5-29      | Bed Temperature Profile for the Isothermal<br>Vacuum Desorption of Water Vapor from Davison<br>Grade O5, 6-16 Mesh Silica Gel at 122°F                        | 5-44          |
| 5-30          | Bed Temperature Profile for the Isothermal<br>Vacuum Desorption of Water Vapor from Davison<br>Grade O5, 6-16 Mesh Silica Gel at 77°F                         | 5-45          |
| 5-31          | Bed Temperature Profile for the Isothermal<br>Vacuum Desorption of CO <sub>2</sub> from Type 5A Linde<br>Molecular Sieve, I/I6-india Pellets at 77°F          | 5-46          |
| 5-32          | Bed Temperature Profile for the Isothermal<br>Vacuum Desorption of <b>C</b> O <sub>2</sub> from Type 5A Linde<br>Molecular Sieve, I/16-india Pellets at I22°F | 5-47          |
| 5-33          | Vacuum Desorption of CO <sub>2</sub> from Linde Type 5A<br>Molecular Sieve                                                                                    | 5-50          |
| 5-34          | Vacuum Desorption of $\mathrm{H}_2\mathrm{O}$ Vapor from Davison Silica Gel                                                                                   | 5-53          |
| 5-35          | Vacuum Desorption of $\mathrm{H}_2\mathrm{O}$ Vapor from Linde Type 5A Molecular Sieve                                                                        | 5 <b>-</b> 56 |
| 6-1           | Prototype Test System                                                                                                                                         | 6-2           |
| 6-2           | Prototype Sorbent Test Bed and Valve Assembly                                                                                                                 | 6-3           |
| 6-3           | Prototype Sorbent Bed and Heat Exchanger Core                                                                                                                 | 6-4           |
| 6-4           | Prototype Silica Gel Test System Configuration Schematic                                                                                                      | <b>6-5</b>    |
| 6-5           | Test Results for a Silica Gel/H <sub>2</sub> O Typical (Run No. 2-2) Desorption-Adsorption Cycle Series                                                       | 6-9           |



| Figure |                                                                                                         | Page |
|--------|---------------------------------------------------------------------------------------------------------|------|
| 6-6    | 3-in. Silica Gel Tests                                                                                  | 6-10 |
| 6-7    | I-in. Silica Gel Tests                                                                                  | 6-11 |
| 6-8    | 2-in. Silica Gel Tests                                                                                  | 6-12 |
| 6-9    | Desorption Pressure Comparison Showing<br>Apparent Leak                                                 | 6-13 |
| 6-10   | Water Breakthrough on 3-in. Silica Gel Bed                                                              | 6-14 |
| 6-11   | Prototype Molecular Sieve Test System Configuration<br>Schematic                                        | 6-16 |
| 6-12   | Thermal Swing CO <sub>2</sub> Removal of a I-in. Bed                                                    | 6-18 |
| 6-13   | Adiabatic CO <sub>2</sub> Removal of a I-in. Bed                                                        | 6-19 |
| 6-14   | CO <sub>2</sub> Adsorption Performance of a 2-in. Bed                                                   | 6-22 |
| 6-15   | Modified Molecular Sieve Test System Configuration                                                      | 6-23 |
| 6-16   | CO <sub>2</sub> Breakthrough in a 3-inDeep Bed                                                          | 6-24 |
| 6-17   | CO <sub>2</sub> Adsorption Performance of a 3-inDeep Bed                                                | 6-26 |
| 6-18   | Computed and Experimental Results for ${\rm CO_2}$ on Dry I-in. 5A Bed                                  | 6-27 |
| 6-19   | Prediction Model for Water Poisoning Effect<br>on Molecular Sieve Bed                                   | 6-29 |
| 6-20   | Comparison of 1-in. 5A Bed Results with Poisoning Prediction                                            | 6-30 |
| 6-21   | Computed and Experimental Results for ${\rm CO_2}$ Breakthrough on Dry 3-in. Bed                        | 6-31 |
| 6-22   | Calculated and Experimental 3-in. 5A Bed ${\rm CO_2}$ Results with Intermittent Metered Water Poisoning | 6-32 |
| 6-23   | Water Breakthrough on 3-in. Molecular Sieve Bed                                                         | 6-34 |
| 7-1    | A Composite Molecular Sieve, Silica Gel Bed for CO <sub>2</sub> Removal                                 | 7-2  |

| Figure |                                                                                                                          | Page |
|--------|--------------------------------------------------------------------------------------------------------------------------|------|
| 7-2    | Correlation of $F_{N_2}$ vs $(\frac{1}{P})$ From Test Data                                                               | 7-8  |
| 7-3    | Vacuum Duct Capacities for Various Duct Sizes and Duct Inlet Pressures                                                   | 7-10 |
| 7-4    | Adsorption Isotherms for CO <sub>2</sub> on Molecular Sieve                                                              | 7-12 |
| 7-5    | Adsorption Isotherms for Water on Silica Gel                                                                             | 7-13 |
| 7-6    | Structure of Program \$9960                                                                                              | 7-14 |
| 7-7    | Computer Comparison of $5/8$ -in. Bed ${\rm CO_2}$ Performance at High Gas Flow                                          | 7-23 |
| 7-8    | Computer Comparison of 5/8-in. Bed CO <sub>2</sub> Performance at Low Gas Flow                                           | 7-24 |
| 7-9    | Effect of Computer Nodal Size on Predicted CO <sub>2</sub> Performance                                                   | 7-25 |
| 7-10   | Effect of Nodal Size on Best Adsorption Mass-Transfer Coefficient                                                        | 7-26 |
| 7-11   | Pressure Histories During ${\rm CO_2}$ Desorption from a 5/8-india Molecular Sieve Bed                                   | 7-28 |
| 7-12   | Pressure Histories During $\mathrm{CO}_2$ Desorption from the Prototype Molecular Sieve Bed                              | 7-29 |
| 7-13   | Adiabatic CO <sub>2</sub> Performance of Prototype Bed                                                                   | 7-30 |
| 7-14   | Comparison of Predicted and Measured Adsorption<br>Performance of a 5/8-india Silica Gel Bed                             | 7-31 |
| 7-15   | Comparison of Predicted and Measured Changes in H <sub>2</sub> O Loading on a 5/8-india Silica Gel Bed During Desorption | 7-32 |
| 7-16   | Pressure History During Desorption of $\rm H_2O$ from a 5/8-india Silica Gel Bed (77 $^{\rm O}$ F)                       | 7-33 |
| 7-17   | Water Breakthrough on 3-in. Silica Gel Bed                                                                               | 7-34 |
| 8-1    | Adsorbent Cannister                                                                                                      | 8-2  |
| 8-2    | Predicted Effect of Bed Size and Gas Flow on CO <sub>2</sub> Removal                                                     | 8-4  |

| Figure |                                                                                                                                          | <u>Page</u> |
|--------|------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 8-3    | Predicted Effects of Cycle Time and Gas<br>Flow on CO <sub>2</sub> Removal and Bed Life                                                  | 8-5         |
| 8-4    | Regenerable CO <sub>2</sub> Removal System                                                                                               | 8-6         |
| 8-5    | Regenerative ${\rm CO}_2$ Removal System Integrated with the Apollo Block II ECS                                                         | 8-7         |
| 8-6    | Schematic of AAP Regenerative CO <sub>2</sub> Removal System                                                                             | 8-8         |
| C-1    | Equilibrium Isotherms of Carbon Dioxide Adsorption on Linde Type 5A, 1/16-india Pellets at 25°C                                          | C-1         |
| C-2    | Equilibrium and Non Equilibrium Isotherms of Carbon Dioxide During Adsorption and Desorption on Linde Type 5A, 1/16-india Pellets at 0°C | C-2         |
| C-3    | Equilibrium and Non Equilibrium Isotherms of Carbon Dioxide Adsorption and Desorption on Linde Type 5A, 1/16-india Pellets at 10.5°C     | C-3         |
| C-4    | Equilibrium and Non Equilibrium Isotherms of Carbon Dioxide Adsorption and Desorption on Linde Type 5A, I/16-india Pellets at 50°C       | C-4         |
| C-5    | Equilibrium and Non Equilibrium Isotherms of Water Vapor Adsorption and Desorption on Linde Type 5A, I/I6-in.—dia Pellets at 25°C        | <b>C-</b> 5 |
| C-6    | Equilibrium and Nonequilibrium Isotherms of . Water Vapor Adsorption and Desorption on Davison Type 05, 6-16 Mish Silica Gel at 25°C     | C6          |
| C-7    | Dynamic Adsorption of CO <sub>2</sub> on Linde Molecular Sieve, Type 5A, 1/16-india Pellets at 25°C                                      | C-7         |
| C-8    | Breakthrough of CO <sub>2</sub> from Linde Molecular Sieve<br>Type 5A, I/I6-india Pellets at 25°C                                        | C-8         |
| C-9    | Dynamic Adsorption of ${\rm CO_2}$ on Linde Molecular Sieve Type 5A, I/I6-india Pellets at $25^{\rm O}{\rm C}$                           | C-9         |
| C-10   | Breakthrough of CO <sub>2</sub> from Linde Molecular Sieve,<br>Type 5A, I/I6-india Pellets at 25°C                                       | C-10        |

| Figure |                                                                                                                 | <u>Page</u> |
|--------|-----------------------------------------------------------------------------------------------------------------|-------------|
| C-11   | Dynamic Adsorption of CO <sub>2</sub> on Linde Molecular Sieve, Type 5A, I/I6-india Pellets at O <sup>0</sup> C | C-11        |
| C-12   | Breakthrough of CO <sub>2</sub> from Linde Molecular Sieve,<br>Type 5A, I/I6-india Pellets at O <sup>0</sup> C  | C-12        |
| C-13   | Dynamic Adsorption of $CO_2$ on Linde Molecular Sieve, Type 5A, $1/16$ -india Pellets at $25^{\circ}C$          | C-13        |
| C-14   | Breakthrough of CO <sub>2</sub> from Linde Molecular Sieve,<br>Type 5A, I/I6-india Pellets at 25°C              | C-14        |
| C-15   | Dynamic Adsorption of CO <sub>2</sub> on Linde Molecular Sieve, Type 5A, I/I6-india Pellets at 25°C             | C-15        |
| C-16   | Breakthrough of CO <sub>2</sub> from Linde Molecular Sieve,<br>Type 5A, I/I6-india Pellets at 25°C              | C-16        |
| C-17   | Dynamic Adsorption of CO <sub>2</sub> on Linde Molecular Sieve, Type 5A, I/I6-india Pellets at 25°C             | C-17        |
| C-18   | Breakthrough of CO <sub>2</sub> from Linde Molecular Sieve,<br>Type 5A, I/I6-india Pellets at 25°C              | C-18        |
| C-19   | Dynamic Adsorption of $CO_2$ on Linde Molecular Sieve Type 5A, $1/16$ -india Pellets at $O^0C$                  | C-19        |
| C-20   | Breakthrough of ${\rm CO_2}$ from Linde Molecular Sieve, Type 5A, I/I6-india Pellets at ${\rm O^0C}$            | C-20        |
| C-21   | Dynamic Adsorption of ${\rm CO}_2$ on Linde Molecular Sieve, Type 5A, I/I6-india Pellets at $25^{\circ}{\rm C}$ | C-21        |
| C-22   | Breakthrough of CO <sub>2</sub> from Linde Molecular Sieve,<br>Type 5A, I/I6-india Pellets at 25°C              | C-22        |
| C-23   | Dynamic Adsorption of ${\rm CO}_2$ on Linde Molecular Sieve Type 5A, I/I5-india Pellets at ${\rm O}^0{\rm C}$   | C-23        |
| C-24   | Breakthrough of CO <sub>2</sub> from Linde Molecular Sieve,<br>Type 5A, I/I6-india Pellets at O <sup>0</sup> C  | C-24        |
| C-25   | Dynamic Adsorption of ${\rm CO}_2$ on Linde Molecular Sieve Type 5A, I/I6-india Pellets at $25^{\circ}{\rm C}$  | C-25        |

| Figure |                                                                                                                 | <u>Page</u>  |
|--------|-----------------------------------------------------------------------------------------------------------------|--------------|
| C-26   | Breakthrough of CO <sub>2</sub> from Linde Molecular Sieve,<br>Type 5A, I/I6-india Pellets at 25°C              | C-26         |
| C-27   | Dynamic Adsorption of ${\rm CO_2}$ on Linde Molecular Sieve Type 5A, I/I6-india Pellets at $25^{\circ}{\rm C}$  | C-27         |
| C-28   | Breakthrough of CO <sub>2</sub> from Linde Molecular Sieve,<br>Type 5A, I/I6-india Pellets at 25°C              | C-28         |
| C-29   | Dynamic Adsorption of CO <sub>2</sub> on Linde Molecular Sieve Type 5A, I/I6-india Pellets at 50°C              | C-29         |
| C-30   | Breakthrough of CO <sub>2</sub> from Linde Molecular Sieve,<br>Type 5A, I/I6-india Pellets at 50°C              | C-30         |
| C-31   | Dynamic Adsorption of $CO_2$ on Linde Molecular Sieve Type 5A, $1/16$ -india Pellets at $9.1^{\circ}C$          | C-31         |
| C-32   | Breakthrough of CO <sub>2</sub> from Linde Molecular Sieve,<br>Type 5A, 1/16-india Pellets at 9.1°C             | C-32.        |
| C-33   | Dynamic Adsorption of ${\rm CO_2}$ on Linde Molecular Sieve Type 5A, 1/16-india Pellets at 25 $^{\rm O}$ C      | C-33         |
| C-34   | Breakthrough of CO <sub>2</sub> from Linde Molecular Sieve,<br>Type 5A, I/I6-india Pellets at 25°C              | C-34         |
| C-35   | Dynamic Adsorption of $CO_2$ on Linde Molecular Sieve Type 5A, I/I6-india Pellets at $50^{\circ}$ C             | C-35         |
| C-36   | Breakthrough of CO <sub>2</sub> from Linde Molecular Sieve,<br>Type 5A, I/I6-india Pellets at 50°C              | C-36         |
| C-37   | Dynamic Adsorption of ${\rm CO_2}$ on Linde Molecular Sieve, Type 5A, I/I6-india Pellets at ${\rm O^0C}$        | C~37         |
| C-38   | Breakthrough of CO <sub>2</sub> from Linde Molecular Sieve,<br>Type 5A, I/I6-india Pellets at O <sup>o</sup> C  | <b>C~3</b> 8 |
| C-39   | Dynamic Adsorption of $\rm H_2O$ Vapor on Davison Silica Gel, Grade O5, 6-16 Mesh Granules at $25^{\circ}\rm C$ | C-39         |
| C-40   | Breakthrough of Water Vapor from Davison Silica Gel<br>Grade O5, 6-16 Mesh Granules at 25°C                     | C-40         |



| <u>Figure</u> |                                                                                                                                          | <u>Pa qe</u> |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| C-41          | Dynamic Adsorption of H <sub>2</sub> O Vapor on Davison Silica<br>Gel Grade O5, 6-16 Mesh Granules at 15.56°C (60°F)                     | C-41         |
| C-42          | Breakthrough of Water Vapor from Davison Silica Gel, Grade 05, 6-16 Mesh Granules at 15.56°C (60°F)                                      | C-42         |
| C-43          | Vacuum Desorption of ${\rm CO}_2$ from Linde Molecular Sieve Type 5A, I/I6-in-dia Pellets at $25^{\circ}{\rm C}$                         | C-43         |
| C-44          | Vacuum Desorption of ${\rm CO}_2$ from Linde Molecular Sieve, Type 5A, I/I6-india Pellets at ${\rm 50^{\circ}C}$                         | C-44         |
| C~45          | Vacuum Desorption of ${\rm CO}_2$ from Linde Molecular Sieve, Type 5A, I/I6-india Pellets at ${\rm 50^{\circ}C}$                         | C-45         |
| C-46          | Vacuum Desorption of ${\rm CO}_2$ from Linde Molecular Sieve, Type 5A, I/I6-india Pellets at 50 $^{\rm O}$ C with Throttled Vacuum       | C-46         |
| C-47          | Vacuum Desorption of ${\rm CO}_2$ from Linde Molecular Sieve, Type 5A, I/I6-india Pellets at ${\rm 50}^{\circ}{\rm C}$                   | C-47         |
| C-48          | Vacuum Desorption of ${\rm CO}_2$ from Linde Molecular Sieve, Type 5A, I/16-india Pellets at Ambient Adiabatic Conditions                | C-48         |
| C-49          | Vacuum Desorption of ${\rm CO_2}$ from Linde Molecular Sieve Type 5A, I/I6-india Pellets at $25^{\circ}{\rm C}$                          | C-49         |
| C-50          | Vacuum Desorption of CO <sub>2</sub> from Linde Molecular Sieve<br>Type 5A, I/I6-india Pellets at 25°C with Throttled<br>Vacuum          | C-50         |
| C-51          | Vacuum Desorption of ${\rm CO}_2$ from Linde Molecular Sieve, Type 5A, I/I6-india Pellets at $25^{\circ}{\rm C}$                         | C-51         |
| C-52          | Vacuum Desorption of CO <sub>2</sub> from Linde Molecular Sieve,<br>Type 5A, I/I6-india Pellets at 25°C for 2 Min and<br>50°C for 28 Min | C-52         |
| C-53          | Vacuum Desorption of CO <sub>2</sub> from Linde Molecular Sieve<br>Type 5A, I/8-india Pellets at 25°C                                    | C-53         |
| C-54          | Vacuum Desorption of $\rm H_2O$ Vapor from Davison Silica Gel, Grade O5, 6-16 Mesh Granules at $25^{\circ}\rm C$                         | <b>C-</b> 54 |

| Figure       |                                                                                                                                                        | <u>Pa qe</u> |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| C055         | Vacuum Desorption of $\rm H_2O$ Vapor from Davison Silica Gel, Grade 05, 6-16 Mesh Granules at $50^{\circ}\rm C$                                       | C-55         |
| <b>C-</b> 56 | Vacuum Desorption of $\rm H_2O$ Vapor from Davison Silica Gel, Grade 05, 6-16 Mesh Granules at $50^{\circ}\rm C$ at Throttled Vacuum                   | C-56         |
| C-57         | Vacuum Desorption of $\rm H_2O$ Vapor from Davison Silica Gel, Grade 05, 6-16 Mesh at $50^{0}\rm C$ at Throttled Vacuum                                | C-57         |
| C-58         | Vacuum Desoprtion of $\rm H_2O$ Vapor from Davison Silica Gel, Grade 05, 6-16 Mesh Granules at $\rm 38^{ o}C$                                          | C-58         |
| C-59         | Vacuum Desorption of $\rm H_2O$ Vapor from Davison Silica Gel, Grade 05, 6-16 Mesh Granules at Ambient Adiabatic Conditions                            | C-59         |
| C-60         | Vacuum Desorption of $\rm H_2O$ Vapor from Davison Silica Gel, Grade 05, 6-16 Mesh Granules at $50^{\circ}\rm C$                                       | C-60         |
| C-61         | Vacuum Desorption of $\rm H_2O$ Vapor from Davison Silica Gel, Grade O5, 3-8 Mesh Granules at $50^{\circ}\rm C$                                        | C-61         |
| C-62         | Vacuum Desorption of $\rm H_2O$ Vapor from Linde Type 5A, I/I6-india Pellets at $200^{\rm o}{\rm F}$                                                   | C-62         |
| C-63         | Vacuum Desorption of H <sub>2</sub> O from Linde Molecular Sieve<br>Type 5A, 1/16-india Pellets at 150°C                                               | C-63         |
| C-64         | Vacuum Desorption of $\rm H_2O$ Vapor from Linde Type 5A I/I6-india Pellets at $\rm 100^{0}C$                                                          | C-64         |
| C-65         | Vacuum Desorption of $\rm H_2O$ Vapor from Linde Molecular Sieve, Type 5A, $\rm I/I6$ -india Pellets at $\rm 100^{\circ}C$ at Throttled Vacuum         | C-65         |
| <b>C-</b> 66 | Vacuum Desorption of H <sub>2</sub> O Vapor from Linde Molecular Sieve, Type 5A, I/I6-india Pellets at IOO <sup>O</sup> C                              | C-66         |
| C-67         | Vacuum Desorption of H <sub>2</sub> O Vapor from Linde Molecular Sieve, Type 5A, I/I6-india Pellets at 200°C                                           | C-67         |
| C-68         | Vacuum Desorption of H <sub>2</sub> O Vapor from Linde Molecular Sieve, Type 5A, I/I6-india Pellets at IOO°C                                           | C-68         |
| C-69         | Vacuum Desorption of $\rm H_2O$ Vapor from Linde Molecular Sieve, Type 5A, $\rm I/I6$ -india Pellets at $\rm 100^{\circ}C$ after a Dry $\rm N_2$ Purge | C-69         |



| <u>Figure</u> |                                                                                                                                                 | Page |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------|------|
| C-70          | Vacuum Desorption of $\rm H_2O$ Vapor from Linde Molecular Sieve, Type 5A, I/I6-india Pellets at $\rm IOO^{0}C$ after a Dry $\rm N_2$ Purge     | C-70 |
| C-71          | Vacuum Desorption of $\rm H_2O$ Vapor from Linde Molecular Sieve, Type 5A, I/I6-india Pellets at $\rm IOO^{\circ}C$ after a Dry $\rm N_2$ Purge | C-71 |

### **TABLES**

| <u>Table</u> |                                                                                                           | <u>Page</u> |
|--------------|-----------------------------------------------------------------------------------------------------------|-------------|
| 5-1          | Cycling Data for Adsorption of Water Vapor at 25°C on Silica Gel and Desorbing at 50°C                    | 5-25        |
| 5-2          | Summary of Dynamic Carbon Dioxide Adsorption on Molecular Sieve Test Data and Results                     | 5-32        |
| 5-3          | Summary of Dynamic Water Vapor Adsorption on Silica Gel Test Data and Results                             | 5-38        |
| 5-4          | Vacuum Desorption Test Conditions                                                                         | 5-39        |
| 5-5          | Test Matrix                                                                                               | 5-48        |
| 5-6          | Vacuum Desorption of CO <sub>2</sub> From Linde Type 5A<br>Molecular Sieve Pellets                        | 5-49        |
| 5-7          | Vacuum Desorption of ${\rm H_2O}$ Vapor from Davison Silica Gel Granules                                  | 5-52        |
| 5-8          | Desorption of Water Vapor from a 5/8-in.dia<br>Bed of I/I6-india Linde Type 5A Molecular<br>Sieve Pellets | 5-55        |
| 6-1          | Silica Gel Performance                                                                                    | 6-7         |
| 6-2          | Summary of Tests on I-inDeep Molecular<br>Sieve Bed                                                       | 6-17        |
| 6-3          | Summary of Tests on 2-inDeep Molecular Sieve Bed                                                          | 6-21        |
| 6-4          | Summary of Tests on 3-inDeep Molecular                                                                    | 6-25        |

#### SECTION I

#### INTRODUCTION

The Apollo Applications Program Environmental Control and Life Support System (AAP EC/LSS) development contract, NAS 9-3541, has as its objective the identification and development of the new subsystems and components necessary to extend the life and performance of the present Block II Apollo environmental control and life support system for potential AAP missions. One of the major new subsystems identified in the Phase IA study portion of the program was a regenerative  $\mathrm{CO}_2$  removal system to replace the expendable LiOH absorbent  $\mathrm{CO}_2$  control method presently used.

This report summarizes the results of a one-year research program conducted by AiResearch on the fundamental properties of solid adsorbents and methods for design and performance prediction of systems using these materials.

The work was conducted with the help and direction of personnel of the Crew Systems Division of the NASA Manned Spacecraft Center, particularly Mr. Wilbert Ellis, Dr. Samuel Davis, and Dr. Jack Winnick.

The basic objective of this work was to provide the data and analytical techniques necessary to design a regenerative CO<sub>2</sub> removal unit for the AAP EC/LSS. Successful conclusion of the task has provided a unique capability to predict, with digital computation techniques, the performance of these previously empirical systems.

#### SECTION 2

#### SUMMARY AND CONCLUSIONS

The initial study and analysis activity of this task identified the basic design of the regenerative  $\rm CO_2$  removal unit as one that would utilize the synthetic zeolites, known as molecular sieves, as the  $\rm CO_2$  adsorbent. It was obvious, however, early in the research program that the water vapor always present in the spacecraft atmosphere would degrade to a marked degree the  $\rm CO_2$  adsorption capability of the molecular sieve. Thus, the parallel investigation of silica gel as a regenerative predryer was conducted.

The equilibrium capacity of these materials for  $\mathrm{CO}_2$  and water was measured over a wide range of temperatures and pressures, and the performance under dynamic conditions duplicating the adsorption and desorption modes in a real system studied. At the same time a mathematical model was developed, after a review of present-day adsorption theory, that best described the results of testing. This model was developed into a transient digital computer program which predicts the performance of a given design.

One of the most important findings of the program was the profound influence of water vapor on the design. The affinity of the molecular sieve for water, its degradation of  $\mathrm{CO}_2$  removal capability, and the extreme difficulty in removing this water once adsorbed by the sieve became a major consideration in system design. It was determined that the understanding of, and design treatment to prevent, the "poisoning" of molecular sieve by water was the secret to a successful regenerative  $\mathrm{CO}_2$  removal system.

The report that follows has been organized into five basic sections, each reporting upon a distinct part of the research program.

Section 3 describes and lists the extensive bibliography built up over the course of the program, to provide the reader with a view of the extensive literature on the subject, and divert him to specific areas of interest.

Section 4 provides, as background information, a summation of the presentday theory of fixed bed adsorption, indicating the general mathematical models that have been developed.

Section 5 describes the initial R&D effort devoted to the fundamental properties and performance of molecular sieves and silica gel and summarizes the results obtained.

Section 6 describes the next step undertaken in the laboratory, where a full-scale adsorbent bed was operated under conditions simulating the real installation to confirm and expand the knowledge already developed.

Section 7 describes the digital computer program developed from the analytical investigation, and shows its applicability to the test data and design problems. The appendixes contain additional test data obtained as well as Fortran listings and typical input and output of the computer program.



#### SECTION 3

#### BIBLIOGRAPHICAL REVIEW OF SORBENT TECHNOLOGY

#### RESUME OF LITERATURE

An extensive review of the literature was instituted to determine insights into the problems various investigators had encountered in developing solutions to the complex phenomena of fixed bed sorption analyses.

Examination of the cited papers will show that there are numerous gassolid contacting operations whose mathematical analysis is quite analogous, if not identical, to that of fixed bed adsorption. Consequently, techniques of solution developed in those fields are directly applicable to adsorption bed analysis.

The following references emphasize these points:

The fundamental review of the whole field of subject matter introduced in this report is:

The ground work for processes exhibiting second-order kinetics was provided by the following references:

Detailed or exacting treatments of intraparticle diffusion are contained in the following references. (Some of these also establish what justification there is for the approximation of Equation (4-I) by a simply formulated kinetic rate law.)

When equations of Table 4-1 are solved neglecting the axial dispersion in Equation (4-1) and substituting kinetic rate laws in place of the full expression for intraparticle diffusion in Equation (4-16), the resulting partial differential equation system is of the hyperbolic type and thus can be solved numerically by means of the method of characteristics as well as by the method of the usual finite differences.

The method of characteristics is discussed in Al, DII, L6, VI.

Finite difference methods are discussed by DII, L6, OI, O2, VI.

The treatment of the full system reduces to a parabolic system. Some general numerical and computational techniques that are available are:

The numerical solution for the full treatment of pore or intraparticle diffusion exemplified by Equation(4-16) and its attendant equations is presented and/or discussed by the following:

EI, G7, U3, R4, R5, T4, T5, T6, T7; the series solution to (4-16) is correlated by: G7, H6, R2.

The following references discuss multicomponent adsorption, adiabatic adsorption, adsorption with reaction, distorted velocity profile, or pressure drop influence:

Standard and current references describing the application to diffusion of mass transfer, pressure drop, axial dispersion studies, and correlations and computational techniques are:

Basic references for diffusion, especially for the partial specific volume average stressed in Appendix B, are:

Treatments of longitudinal diffusion, i.e., axial dispersion, are contained in these references:

Reference M4 makes a particular point of isolating surface diffusion from the more usual kind of intraparticle diffusion. Reference B2 is basic for an understanding of the phenomenology of this process. References KIO and KII present the kinetic viewpoint. The influence of surface migration on adsorption equilibrium is given in the following series of articles:

In fact, in Reference D8, a two dimensional van der Waals equation of state, is developed to characterize a specific adsorption system.

Surprisingly enough, the Polanyi potential theory for adsorption equilibrium (PI) is still finding use today (see GI3; also L9 and LIO).

Early work on adsorption beds that employed simple or restrictedly applicable equations and references that extend or review these treatments are:

B12, D1, K8, K9, M9, M10

The following are fairly recent articles that use sorption processes to determine basic fixed bed phenomena such as intraparticle diffusion, heats of adsorption, etc:

GI, GIO, HI

- Al Acrivos, A., "Method of Characteristic Technique: Application to Heat and Mass Transfer Problems," <u>Ind. Eng. Chem.</u> 48, 703(1956)
- A2 Acrivos, A., "On the Combined Effect of Longitudinal Diffusion and External Mass Transfer Resistance in Fixed Bed Operations," <a href="Chem. Eng. Sci. 13">Chem. Eng. Sci. 13</a>, (1960)
- A3 Amundson, N. R., "Mathematics of Adsorption in Beds, Part I," J. Phys. Colloid Chem. 52, 1153(1948)
- A4 Amundson, N. R., "Mathematics of Adsorption in Beds, Part II," <u>J. Phys. Colloid Chem. 54</u>, 812(1950)
- A5 Anzelius, A., "Uber Erwarmung vermittels durchstromender Medien,"

  Z. Angew. Math. Mech. 6, 291(1926)
- BI Baddour, R. F., and R. D. Hawthorn, "Chromatographic Separation by Ion Exchange," <u>Ind. Eng. Chem. 47</u>, 2517(1955)
- B2 Barrer, R. M., "A New Approach to Gas Flow in Capillary Systems," J. Phys. Chem. 57, 35(1953)
- B3 Barrer, R. M., Peterson, D. I. and B. P. Schoenborn, "Separation of Gases by Zeolites," Science 153, 556(1966)
- B4 Beaton, R. H., and C. C. Furnas, "Concentration of Dilute Solutions of Electrolytes by Base-Exchange Materials," <u>Ind. Eng. Chem. 33</u>, 1500(1951)
- B5 Benson, S. W. and J. W. King, Jr., "Electrostatic Aspects of Physical Adsorption; Implications for Molecular Sieves and Gaseous Anesthesia," Science 150, 1710-1713, December 1965.
- B6 Bertsch, L., and H. W. Habgood, "An Infrared Spectroscopic Study of the Adsorption of Water and Carbon Dioxide by Linde Molecular Sieve X", J. Phys. Chem., 67, 1621-8, (August 1963).
- B7 Bieber, H., F. E. Steidler, and W. A. Selke, "Ion Exchange Rate Mechanism," Chem. Eng. Prog. Symposium Ser. 50, No. 14, 17(1954)
- B8 Bird, R. B., C. F. Curtiss, and J. D. Hirschfelder, "Fluid Mechanics and the Transport Phenomena," <u>Chem. Eng. Prog. Symposium Ser. 51</u>, No. 16, 69(1955)
- B9 Bird, R. B., "Theory of Diffusion," Advances in Chemical Engineering, Vol. I, Drew, T. B. and J. W. Hoopes, Jr. eds., Academic Press, N. Y. 1956
- BIO Bird, R. T., "The Equations of Change and the Macroscopic Mass," Chem. Eng. Sci. 6, 123(1957)



- BII Bird, R. B., Stewart, W. E., and E. N. Lightfoot, Transport Phenomena, Wiley, N. Y. 1960
- Bl2 Bohart, G. S., and E. Q. Adams, "Some Aspects of the Behavior of Charcoal with Respect to Chlorine," J. Am. Chem. Soc. 42, 523(1920)
- BI3 Bowman, J. R. and R. C. Briant, "The Theory of the Performance of Packed Rectifying Columns," <u>Ind. Eng. Chem. 39</u>, 746(1947)
- BI4 Boyd, G. E., A. W. Adamson, and L. S. Meyers, Jr., "The Exchange Adsorption of Ions from Aqueous Solutions by Organic Zeolites, Part II: Kinetics," J. Am. Chem. Soc. 69, 2836(1947)
- BI5 Brinkley, Jr., S. R., "Heat Transfer Between a Fluid and a Porous Solid Generating Heat," J. Applied Phys. 18, 582(1947)
- BIG Brunauer, S., Emmelt, P. H. and E. Teller, J. Am Chem. Soc. 60, 309 (1938) Adsorption of Gases in Multimolecular Layers
- Cl Caddel, J. R., and R. L. Moison, "Mixed-Bed Deionization at High Flow Rates," Chem. Eng. Prog. Symposium Ser. 50, No. 14, 1(1954)
- C2 Campbell, M. L., and L. N. Canjar, "Adsorption of Methane from Hydrogen on Fixed Beds of Silica Gel," A. E. Ch. E. J. 8, 540(1962)
- Carberry, J. L., and M. W. Wendel, "A Computer Model of the Fixed Bed Catalytic Reactor: The Adiabatic and Quasi-adiabatic Cases," A. I. Ch. E. J. 9, 129(1963)
- C4 Chilton, T. H., and A. P. Colburn, "Heat Transfer and Pressure Drop in Empty, Baffled and Packed Tubes, Part II: Pressure Drop in Packed Tubes," Trans. A. I. Ch. E. 26, 178(1931)
- C5 Cussler, E. L., Jr. and E. N. Lightfoot, Jr., "Multicomponent Diffusion in Semi-Infinite Systems," A. E. Ch. E. J. 9, 783(1963)
- C6 Cussler, E. L., Jr. and E. N. Lightfoot, Jr., "Multicomponent Diffusion in Restricted Systems," A. I. Ch. E. J. 9, 702(1963)
- DI Danby, C. J., J. G. Davoud, R. H. Everett, C. N. Hinshelwood, and R. M. Lodge, "The Kinetics of Adsorption of Gases from an Air Stream by Granular Reagents," <u>J. Chem. Soc. 98</u> (1946)
- DeBoer, J. H., and S. Kruyer, "Entropy and Mobility of Adsorbed Molecules, Part I: Procedure, Atomic Gases on Charcoal," <u>Proc. Kon. Ned. Ad. v. Wet., 55B</u>, 45(1952)
- D3 DeBoer, J. H., and S. Kruyer, "Entropy and Mobility of Adsorbed Molecules, Part II: Nitrogen on charcoal," Proc. Kon. Ned. Ak. v. Wet. 56B, 67(1953)
- DeBoer, J. H., and S. Kruyer, "Entropy and Mobility of Adsorbed Molecules, Part III: Hydrogen and Oxygen on Charcoal," <u>Proc. Kon. Ned. Ak. v. Wet.</u> 56B, 236(1953)



- D5 DeBoer, J. H., and S. Kruyer, "Entropy and Mobility of Adsorbed Molecules, Part IV: Aliphatic Hydrocarbons on Charcoal," <u>Proc. Kon. Ned. Ak. V. Wet. 56B</u>, 415(1953)
- DeBoer, J. H., and S. Kruyer, "Entropy and Mobility of Adsorbed Molecules, Part V: CO, CO<sub>2</sub>, and CS<sub>2</sub> on Charcoal,""Proc. Kon. Ned. Ad. v. Wet. 57B, 92(1954)
- D7 DeBoer, J. H., and S. Kruyer, "Entropy and Mobility of Adsorbed Molecules, Part VI: Polar Gases on Charcoal," <u>Proc. Kon. Ned. Ak. v. Wet. 58B</u>, 61(1955)
- DB DeBoer, J. H., and S. Kruyer, "The Two-Dimensional van der Waals Constants of Molecules Adsorbed on Charcoal and Graphite," <u>Trans. Faraday Soc. 54</u>, 540(1958)
- D9 DeGroot, S. R., and P. Mazur, "Non-Equilibrium Thermodyanmics," <u>Interscience</u>, N. Y., 1962
- DIO Devault, D., "The Theory of Chromatograph," J. Am. Chem. Soc. 65, 532(1943)
- DII Dranoff, J. S., and L. Lapidus, "Multicomponent Ion Exchange Column Calculations," N.Y.U. I.B.M. Symposium on Digital Computing in the Chemical and Petrochemical Industries P. 63 1958 N.Y.
- El Edeskuty, F. J., and N. R. Amundson, "Mathematics of Adsorption, Part IV: Effect of Intraparticle Diffusion in Agitated Static Systems," J. Phys. Chem. 56, 148(1952)
- FI Fitts, D. D., Nonequilibrium Thermodynamics, McGraw-Hill, N.Y., 1962
- F2 Ford, F. E., and D. D. Perlmutter, "Mass Transfer Effects in Surface Catalysis," A. I. Ch. E. J. 9, 371(1963)
- F3 Frish, N. W., and F. X. McGarvey, "Application of Ion Exchanger Equilibrium Relationships to Process Design," Chem. Eng. Prog. Symposium Ser. 55, No. 24, (1959)
- F4 Frisch, N. W., and R. Kunin, "Kinetics of Mixed-Bed Deionization, Part I," A. I. Ch. E. J. 6, 640(1960)
- F5 Funk, J. E., and G. Houghton, "A Mathematical Model for Gas-Liquid Partition Chromatography," Nature 188, 389(1960)
- F6 Funk, J. E. and G. Houghton, "A Lumped-Film Model for Gas-Liquid Partition Chromatography, Part I Numerical Methods of Solution," J. Chromatog. 6, 193(1961)



- F7 Funk, J. E. and G. Houghton, "A Lumped-Film Model for Gas-Liquid Partition Chromatography, Part II Experimental Evaluation of Analytical Solutions,"

  J. Chromatog. 6, 281(1961)
- F8 Furnas, C. C., "Heat Transfer from a Gas Stream to a Bed of Broken Solids," Trans. A. I. Ch. E. 24, 142(1930)
- F9 Furnas, C. C., "Heat Transfer from a Gas Stream to a Bed of Broken Solids," Ind. Eng. Chem. 22, 26(1930)
- FIO Furnas, C. C., "Heat Transfer from a Gas Stream to a Bed of Broken Solids," Ind. Eng. Chem. 22, 721(1930)
- GI Gale, R. L., and R. A. Beebe, "Determination of Heats of Adsorption on Carbon Blacks and Bone Mineral by Chromatography Using the Eluted Pulse Technique," J. Phys. Chem. 68, 555(1964)
- Gamson, B. W., G. Thodos. and D. A. Hougen, "Heat, Mass and Momentum Transfer in the Flow of Gases through Granular Solids," <u>Trans. A. I. Ch.</u>
   E. 39, I(1943)
- G3 Gamson, B. W., "Heat and Mass Transfer: Fluid Solid Systems," Chem. Eng. Prog. 47, 19(1951)
- G4 Geser, J. J., and L. N. Canjar, "Adsorption of Methane and Hydrogen on Packed Beds of Activated Carbon," A. I. Ch. E. J. 8, 494(1962)
- Giddings, J. C., and S. L. Seager, "Method for Rapid Determination of Diffusion Coefficients, Theory and Application," <u>Ind. Eng. Chem. Fund 1</u>, 277(1962)
- G6 Gilliland, E. R., and R. F. Baddour, "The Rate of Ion Exhchange," Ind. Eng. Chem. 45, 330(1953)
- G7 Glueckauf, E., "Theory of Chromatography, Part IO: Formulae for Diffusion into Spheres and their Application to Chromatography," <u>Trans. Faraday Soc. 51</u>, 1540(1955)
- G8 Goldstein, S., "On the Mathematics of Exchange Processes in Fixed Columns, Part I: Mathematical Solutions and Asymptotic Expansions," <u>Proc. Roy.</u> <u>Soc. A, 219</u>, 15(1953)
- Goldstein, S., "On the Mathematics of Exchange Processes in Fixed Columns, Part II: The Equilibrium Theory as the Limit of the Kinetic Theory," Proc. Roy. Soc. A, 219, 171(1953)
- GIO Gorring, R. L., and A. J. DeRosset, "Gas Diffusion in Porous Catalysts: Diffusion-Controlled Elution of Physically Adsorbed Hydrocarbons," J. Catalysis 3, 341(1964)



- Gll Gottschlich, C. F., "Axial Dispersion in a Packed Bed," A. I. Ch. E. J. 9, 88(1963)
- G12 Grapham, D., "Adsorption Equilibrium," Chem. Prog. Symposium Ser. 55, No. 24(1959)
- GI3 Grant, R. J., and M. Manes, "Correlation of Some Gas Adsorption Data Extending to Low Pressures and Supercritical Temperatures," Ind. Eng. Chem. Fund. 3, 221(9164)
- HI Habgood, H. W., and J. F. Hanlan, "A Gas Chromatographic Study of the Adsorptive Properties of a Series of Activated Charcoals," <u>Can J. Chem. 31</u>, 843(1959)
- H2 Harkins, W. D. and Jura, G., "Surfaces of Solids. XII An Absolute Method for the Determination of the Area of a Finely Divided Crystalline Solid," J. Am. Chem. Soc. 66, 1362(1944)
- H3 Hashimoto, I., Deshpande, K. B. and H. C. Thomas, "Peclet Numbers and Retardation Factors for Ion Exchange Columns," <u>Ind. Eng. Chem. Fund.3</u>, 216(1964)
- H4 Hatfield, M. R., "Fluid Flow Through Porous Carbon," <u>Ind. Eng. Chem. 31</u>, 1419(1959)
- H5 Heifferick, F., and M. S. Plesset, "Ion Exhange Kinetics: A Nonlinear Diffusion Problem," J. Chem. Phys. 28, 418(1958)
- H6 Heitner-Wirguin, C., and G. Markovits, "Kinetics of Ion Exchange in the Chelating Resin Bio-Chelex 100, Part I: The Exchange of the Alkaline Earth Ions," J. Phys. Chem. 67, 2263(1963)
- H7 Hellums, J. D., and S. W. Churchill, "Simplification of the Mathematical Description of Boundary and Initial Value Problems," A. I. Ch. E. J. 10, 110(1964)
- H8 Hersh, C. K., Molecular Sieves, Reinhold Publishing Corp., N. Y., (1961)
- H9 Hiester, N. K., and T. Vermeulen, "Elution Equations for Adsorption and Ion Exchange in Flow Systems," J. Chem. Phys. 16, 1087(1948)
- HIO Hiester, N. K., and T. Vermeulen, "Saturation Performance of Ion-Exchange and Adsorption Columns," Chem. Eng. Prog. 48, 505(1952)
- HII Hiester, N. K., S. B. Radding, R. L. Nelson, Jr., and T. Vermeulen, "Interpretation and Correlation of Ion Exhange Column Performance under Nonlinear Equilibia," A. I. Ch. E. J. 2, 404(1956)
- HI2 Hiester, N. K., and T. Vermeulen, and G. Klein, "Adsorption and Ion Exchange," Section 16, Chemical Engineers' Handbook, (Perry), 4th edition (1963)



- HI3 Hill, T. L., "Theory of Physical Adsorption," Advances in Catalysis, Vol. IV, Academic Press, N. Y. (1952)
- HI4 Hill, T. L., Thermodynamic of Small Systems, 2 vols., Benjamin, N. Y. (1963-1964)
- HI5 Hobson, J. P. and R. A. Armstrong, A Study of Physical Adsorption at Very Low Pressures Using Ultrahigh Vacuum Techniques, J. Phys. Chem. 67, 2000(1963)
- HI6 Hougen, D. A., and W. R. Marshall, Jr., "Adsorption from a Fluid Stream Flowing through a Stationary Granular Bed," <u>Chem. Eng. Prog. 43</u>, 197(1947)
- H17 Houghton, G., "Band Shapes in Non-Linear Chromatography with Axial Dispersion," J. Phys. Chem. 67, 84(1963)
- HI8 Huang, C. J., and C. H. Kuo, "General Mathematical Model for Mass Transfer Accompanied by Chemical Reaction," A. I. Ch. E. J. 9, 161(1963)
- KI Kasten, P. R., and N. R. Amundson, "An Elementary Theory of Adsorption in Fluidized Beds: Mathematics of Adsorption in Beds," <u>Ind. Eng. Chem. 42</u>, 1342(1950)
- K2 Kasten, P. R., L. Lapidus, and N. R. Amundson, "Mathematics of Adsorption in Beds, Part V: Effect of Interparticle Diffusion in Flow Systems in Fixed Beds," J. Phys. Chem. 56, 683(1952)
- K3 Kel'tsev, N. V., Kinetics of Desorption of Water Vapor and Carbon Dioxide from Zeolites under Vacuum, Gazovaya Promyshlennost' (Gas Industry) 4 51-54(1964)
- K4 Kington, G. L., and A. C. Macleod, Trans. Faraday Society, 55, 1799 (1959)
- K5 Klinkenberg, A., "Numerical Evaluation of Equations Describing Transient Heat and Mass Transfer in Packed Solids," <u>Ind. Eng. Chem. 40</u>, 1992(1948)
- K6 Klinkenberg, A., "Heat Transfer in Cross Flow Heat Exchangers and Packed Beds: Evaluation of Equations for Penetration of Heat or Solutes,"

  Ind. Eng. Chem. 46, 2285(1954)
- K7 Klinkenberg, A., "Equations for Transient Heat Transfer in Packed Beds," A.I. Ch. E. J. 8, 703(1962)
- K8 Klotz, I. M., "The Adsorption Wave," Chem. Revs. 39, 241(1946)
- K9 Klotz, I. M., "The Adsorption Wave," <u>Chapter I in Handbook on Aerosols</u>, (TID-4500, 27 ed.), U.S.A.E.C., Washington, D.C., 1950, Reissued 1963
- KIO Kovach, J. L., Principles of Adsorption, Barneby-Cheney Co., Columbus, Ohio



- KII Kruyer, S., "Hopping Molecules and Surface Migration," <u>Proc. Kon. Ned. Ak. v. Wet. 56B</u>, 274(1953)
- K12 Kruyer, S., "The Time of Adsorption and the Time of Oscillation," Proc. Kon. Ned. Ak. v. Wet. 58B, 73(1955)
- LI Lapidus, L., and N. R. Amundson, "Mathematics of Adsorption in Beds, Part III," J. Phys. Chem. 54, 821(1950)
- L2 Lapidus, L., and N. R. Amundson, "The Rate-Determining Steps in Radial Adsorption Analysis," J. Phys. Chem 56, 373(1952)
- Lapidus, L., and N. R. Amundson, "Mathematics of Adsorption in Beds, Part VI: The Effect of Longitudinal Diffusion in Ion Exchange and Chromatographic Column," J. Phys. Chem. 56, 984(1952)
- L4 Lapidus, L., and J. B. Rosen, "Experimental Investigations of Ion Exchange Mechanisms in Fixed Beds by Means of an Asymptotic Solution," <u>Chem. Eng. Prog. Symposium Ser. 50</u>, No. 14, 97(1954)
- L5 Lapidus, L., "Sorption Processes: Granular Processes-Adsorption," <u>Chem. Eng. Prog. 53</u>, 517(1957)
- L6 Lapidus, L., Partial Differential Equations in Digital Computation for Chemical Engineers, McGraw-Hill, N.Y. (1962)
- L7 Ledoux, E., Vapor Adsorption, Industrial Applications and Competing Processes, Chemical Publishing Co., N.Y. (1945)
- L8 Ledoux, E., "Dynamic Cooling of Adsorbent Beds," <u>Ind. Eng. Chem. 40</u>, 1970(1948)
- Lewis, W. K., E. R. Gilliland, B. Chertow, and W. P. Cadogan, "Adsorption Equilibria: Hydrocarbon Gas Mixtures," <u>Ind. Eng. Chem. 42</u>, 1319(1950)
- LIO Lewis, W. K., E. R. Gilliland, B. Chertow, and W. P. Cadogan, "Adsorption Equilibrium: Pure Gas Isotherms," Ind. Eng. Chem. 42, 1326(1950)
- LII Löf, G. O. G., and R. W. Hawley, "Unsteady-State Heat Transfer Between Air and Loose Solids," Ind. Eng. Chem. 40, 1061(1948)
- L12 Lundberg, J. L., M. B. Wilk, and M. J. Huyett, "Sorption Studies Using Automation and Computation," <u>Ind. Eng. Chem. Fund. 2</u>, 37(1963)
- MI Mantell, C. L., Industrial Carbon, Van Nostrand, N. Y. (1946) 2nd edn.
- M2 Mantell, C. L., Adsorption, McGraw-Hill, N. Y. (1951) 2nd edn.
- M3 Marks, D. E., Robinson, R. J., Arnold, C. W., and Hoffmann, A. E., "Dynamic Behavior of Fixed-Bed Adsorbers," <u>J. Petrol. Technol. 15</u>, 433(1963)



- M4 Masamune, S., and J. M. Smith, "Pore Diffusion in Silver Catalysts," A. I. Ch. E. J. 8, 217(1962)
- M5 Masamune, S., and J. M. Smith, "Adsorption Rate Studies: Significance of Pore Diffusion," A. I. Ch. E. J. 10, 247(1964)
- M6 Masamune, S., and J. M. Smith, "Adsorption Rate Studies: Interaction of Diffusion and Surface Processes," A. I. Ch. E. J. 11, 34(1965)
- M7 Masamune, S., and J. M. Smith, "Adsorption of Ethyl Alcohol on Silica Gel," A. I. Ch. E. J. 11, 41(1965)
- M8 McConnachie, J.T.L., and G. Thodos, "Transfer Processes in the Flow of Gases Through Packed and Distended Beds," A. I. Ch. E. J. 9, 60(1963)
- M9 Mecklenburg, W., "Über Schichtenfiltration, ein Beitrag zur Theorie der Gasmaske," Z. Elecktrochem. 31, 488(1925)
- MIO Mecklenburg, W., "Uber Schichtenfiltration, ein Beitrag zur Theories der Gasmaske, II," Kolloid Z. 52, 88(1930)
- MII Michaels, A. S., "Simplified Method of Interpreting Kinetic Data in Fixed-Bed Ion Exchange," <u>Ind. Eng. Chem.</u> 44, 1922(1952)
- M12 Moison, R. L., and H. A. O'Hern, Jr., "Ion Exchange Kinetics," Chem. Eng. Prog. Symposium Ser. 55, No. 24, 71(1959)
- MI3 Monet, G. P., "Adsorption, Dialysis and Ion Exchange," Chem. Eng. Prog. 53, 514(1957)
- MI4 Monet, G. P., "Similarities in Adsorption, Dialysis, and Ion Exchange," Chem. Eng. Prog. Symposium Ser. 55, No. 24 (1959)
- NI Nutter, J. I., and G. Burnet, Jr., "Drying of Air by Fixed Bed Adsorption with Molecular Sieves," A. I. Ch. E. J. 9, 202(1963)
- O'Brien, G. G., M. A. Hyman, and S. Kaplan, "A Study of the Numerical Solution of Partial Differential Equations," <u>J. Math. Phys. 29</u>, 223(195!)
- 02 Opler, A., and N. K. Hiester, <u>Tables for Predicting the Performance of Fixed-Bed Ion Exchange</u>, Stanford Research Institute, Stanford, California
- PI Polanyi, M., "Adsorption and the Origin of Adsorption Forces," Z. Electrochem. 26, 370(1920)
- RI Rao, M. R., and J. M. Smith, "Diffusion Resistances in Alumina and Silica Catalysts," A. I. Ch. E. J. 9, 485(1963)
- R2 Reichenberg, D., "Properties of Ion-Exchange Resins in Relation to their Structure, Part III: Kinetics of Exchange," J. Am. Chem. Soc. 75, 589(1953)
- R3 Roemer, G., J. S. Dranoff, and J. M. Smith, "Diffusion in Packed Beds at Low Flow Rates," <u>Ind. Eng. Chem. Fund. 1</u>, 284(1962)



Page 3-11

- R4 Rosen, J. B., "Kinetics of a Fixed Bed System for Solid Diffusion into Spherical Particles," J. Chem. Phys. 20, 387(1952)
- R5 Rosen, J. B., "General Numerical Solution for Solid Diffusion in Fixed Beds," Ind. Eng. Chem. 46, 1590(1954)
- R6 Rothfeld, L. B., "Gaseous Counterdiffusion in Catalyst Pellets,"
  A. I. Ch. E. J. 9, 19(1963)
- R7 Round, G. F., R. Newton, and P. J. Redberger, "Variable Mesh Size in Iteration Methods of Solving Partial Differential Equations and Application to Heat Transfer," Chem. Eng. Prog. Symposium Ser. 58, No. 37, 29(1962)
- SI Schmelzer, E. R., M. C. Molstad, and P. F. Hagerty, "Selective Adsorption of Toluene and n-Heptane by Silica Gel," <u>Chem. Eng. Prog. Symposium Ser. 55</u>, No. 24, 209(1959)
- S2 Schumann, T. E. W., "Heat Transfer: A Liquid Flowing Through a Porous Prism," J. Franklin Inst. 208, 405(1929)
- S3 Selke, W. A., and H. Bliss, "Application of Ion Exchange Copper-Amberlite IR-120 in Fixed Beds," Chem. Eng. Prog. 46, 509(1950)
- S4 Selke, W. A., "Sorption Processes, Granular Processes-Ion Exchange," Chem. Eng. Prog. 53, 601(1957)
- S5 Sherry, H. S., "Separation of Gases by Zeolites," Science 153, 555(1966)
- S6 Smith, S. B., A. X. Heltgen, and A. J. Juhola, "Kinetics of Batch Adsorption of Dichlorophenol on Activated Carbon," <u>Chem. Eng. Prog.</u> Symposium Ser. 55, No. 24(1959)
- Stahel, E. P., and C. J. Geankoplis, "Axial Diffusion and Pressure Drop of Liquids in Porous Media," A. I. Ch. E. J. 10, 174(1964)
- Stewart, W. E., "Forced Convection in Three-Dimensional Flows, Part I: Asymptotic Solutions for Fixed Interfaces," A. I. Ch. E. J. 9, 528(1963)
- Stewart, W. E., and R. Prober, "Matrix Calculation of Multicomponent Mass Transfer in Isothermal Systems," <u>Ind. Eng. Chem. Fund. 3</u>, 225(1964)
- SIO Stone, H. L., and P. L. T. Brian, "Numerical Solution of Convective Transport Problems," A. I. Ch. E. J. 9, 68(1963)
- Thiele, E. W., "Material or Heat Transfer Between a Granular Solid and Flowing Fluid, Present Status of Theory," Ind. Eng. Chem. 38, 646 (1946)



- T2 Thomas, H. C., "Heterogeneous Ion Exchange in a Flowing System,"

  J. Am. Chem. Soc. 66, 1664(1944)
- T3 Thomas, H. C., "Chromatography: A Problem in Kinetics," Ann. N. Y. Acad. Sci. 49, 161(1948)
- T4 Thomas, H. C., "Solid Diffusion in Chromatography," <u>J. Chem. Phys. 19</u> 1213(1951)
- Tien, C., and G. Thodos, "Ion Exchange Kinetics for Systems of Nonlinear Equilibrium Relationships," A. I. Ch. E. J. 5, 373(1959)
- Tien, C. and G. Thodos, "Ion Exchange Kinetics for Systems of Linear Equilibrium Relationships," A. I. Ch. E. J. 6, 364(1960)
- T7 Tien, C., "Adsorption Kinetics of a Nonflow System with Nonlinear Equilibrium Relationship," A. I. Ch. E. J. 7, 410(1961)
- T8 Treybal, R. E., Mass Transfer Operations, McGraw-Hill, N. Y. (1955)
- VI Van Arsdel, W. B., "Simultaneous Heat and Mass Transfer in a Nonisothermal System: Through-Flow Drying in the Low-Moisture Range," <u>Chem. Eng. Prog. Symposium Ser. 51</u>, No. 16, 47(1955)
- V2 Vasishth, R. C., and M. M. David, "Rate Studies in Concentrated Solutions,"
  A. I. Ch. E. J. 5, 394(1959)
- V3 Vassiliou, B., and J. S. Dranoff, "The Kinetics of Ion Exclusion," A. I. Ch. E. J. 8, 248(1962)
- V4 Vermeulen, T., and N. K. Hiester, "Ion-Exchange Chromatography of Trace Components," <u>Ind. Eng. Chem. 44</u>, 636(1952)
- V5 Vermeulen, T., "Theory for Irreversible and Constant-Pattern Solid Diffusion," <a href="Ind.Eng.Chem.45">Ind. Eng.Chem.45</a>, 1664(1953)
- V6 Vermeulen, T., and N. K. Hiester, "Ion-Exchange and Adsorption Column Kinetics with Uniform Partial Presaturation," J. Chem. Phys. 22, 96(1954)
- V7 Vermeulen, T., "Separation by Adsorption Methods," <u>Advances in Chemical Engineering</u>, Vol II, (T. B. Drew and J. W. Hoopes, Jr., eds.), Academic Press. N. Y. (1958)
- V8 Vermeulen, T., and N. K. Hiester, "Kinetic Relationships for Ion Exchange Processes," Chem. Eng. Prog Symposium Ser. 55, No. 24, 61(1959)
- WI Walter, J. E., "Multiple Adsorption from Solutions," <u>J. Chem. Phys. 13</u>, 229(1945)



- W2 Wicke, E., "Empirische und theoretische Untersuchungen der Sorptionsgeschwindigkeit von Gasen an porbsen Stoffen II," Kolloid Z. 86, 295(1939)
- W3 Wilke, C. R., and O. A. Hougen, "Mass Transfer in the Flow of Gases through Granular Solids Extended to Low Modified Reynolds Numbers,"

  Trans. A. I. Ch. E. 61, 445(1945)
- W4 Wernick, M. Task No. 33 in Report CB-1004, Collective Protection Against CB Agents by Makowski, J., et al., AD 462, 636 Garrett Corporation, AiResearch Manufacturing Company Division, Los Angeles, California. Contract DA-18-035-AMC-279(A) for Chemical Research and Development Laboratories, U.S. Army Edgewood Arsenal, Maryland, April 1965.
- W5 Wernick, M., Task No. 33 in Report CB-1006, Collective Protection Against CB Agents by Makowski, J., et al., AD473,535 Garrett Corporation, AiResearch Manufacturing Company Division, Los Angeles, Callfornia. Contract DA-18-035-AMC-279(A) for Chemical Research and Development Laboratories, US Army Edgewood Arsenal, Maryland, September 1965.
- W6 Wernick, M. AiResearch Manufacturing Company Proposal SS-3094, Vol. 2, Section 2, Exhibit A Technical Discussion, 1964.
- W7 Wheeler, A., Task No. 12 in Report CB 1008, vol. 1, Collective Protection
  Against CB Agents by Makowski, J., et. al., AD 4805 II. Garrett
  Corporation, AiResearch Manufacturing Company Division, Los Angeles,
  Califronia. Contract DA-18-035-AMC-279(A) for Physical Research Laboratory,
  U.S. Army Edgewood Arsenal, Maryland, February 1966.
- YI Yoshida, F., "Gas-Film Mass Transfer in a Packed Column," <u>Chem. Eng. Prog. Symposium Ser. 51</u>, No. 16, 59(1955)
- Y2 Yoshida, F., Ramaswami, D., and O. A. Hougen, "Temperatures and Partial Pressures at the Surfaces of Catalyst Particles," A. I. Ch. E. J. 8, 5(1962)



#### SECTION 4

# FUNDAMENTAL BASIS OF THERMODYNAMICS AND KINETICS FOR FIXED BED SORPTION PROCESSES

#### INTRODUCTION

Adsorption processes that occur in fixed beds can be studied from two general points of view. If the process is allowed to take place over a relatively long period of time for a fixed amount of gas, i.e., a batch process, then equilibrium considerations are of first importance. On the other hand, if a flow or cycling process is of practical interest, i.e., a gas flows over the solid which may alternately adsorb or desorb constituents from the stream, then dynamical or transport considerations may also become important.

Historically, the static process has received prior study; data correlations at constant temperatures between concentration in the gas phase and on the solid surface have been made. These isotherms, and their alternative variants, isobars and isosteres were explained by means of various theories concerning solid surfaces and the molecular forces that were involved. Speculation proceeds even today as to the underlying physical explanation of these data correlation curves. Some mention will be made here of some of these highlights along with the thermodynamics of the equilibrium process before moving on to the dynamical or transport considerations. For the sake of fixing attention on the overall view of the problem the following summary of basic phenomena should be kept in mind.

#### BASIC PHENOMENA

The adsorption-desorption process in a fixed granular bed involves the following sequence:

- (a) Mass transfer of contaminants and other gaseous components from the bulk of the flowing gas stream to the proximity of the interstices and pores of the granular bed
- (b) Diffusion through the porous substructure of the solid until encounter with the surface
- (c) Retention at the surface by means of condensation or reaction with it
- (d) Disengagement of the contaminants or reaction products from the solid surface
- (e) Diffusion out of the porous substructure
- (f) Mass transfer into the bulk gas stream



Steps I and 2, and 5 and 6, have been differentiated for the sake of emphasizing a serious difference in the mechanisms of the diffusional transport in or out of the pores. In Steps 3 and 4, the components may stick to the surface or be freed from it either by means of long-range forces akin to those of intermolecular attraction that produce condensation or vaporization (physical adsorption), or by means of stronger interactions of a more energetic kind leading to reactivity with components on the surface of the solid (chemisorption). The latter components may be quite different from those found in the bulk of the solid. These may be impurities that lead to electrical-charge which may have been introduced during formulation of the adsorbent material; these defects may have been formed by retention of gases during activation or pretreatment of the sorbent.

A quantitative treatment of the adsorption process requires that the kinetics of Steps I through 6 be examined in detail; in the general case, this leads to mathematical complexities. All of the mass transport mechanisms and surface reaction steps must be incorporated into the unsteady-state behavior of the bed. The energy balance for this transient behavior must be considered together with the material balance for each contaminant. Most analytical expressions assume that one step is rate-controlling and that the other steps are of negligible importance. Such analyses are usually inaccurate when applied to predicting bed behavior over a wide range of operating conditions. Also, the neglect of heat effects in the adsorption process (where these are significant) can introduce serious analytical deficiencies.

Following is a sketch of what is observed in a fixed bed of adsorbent material during flow-through of the gaseous medium. Let t be the total time since the inception of contaminant flow and y the concentration of the contaminant in the effluent. The effluent stream exhibits the following schematic variation of y with t:



The effluent will at first have a small concentration of the contaminant; then y will increase until it reaches the current value of the inlet y, and no removal is afforded by the bed.



A similar situation will develop in the bed prior to observance of these phenomena in the effluent. If w is the concentration of the contaminant in the bed, the same wave pattern as in the above figure will move down the length of the bed until its subsequent appearance in the effluent stream. The latter occurrence is termed breakthrough, and the wave pattern is called the adsorption wave. More detailed descriptions are given later in this section.

One of the major purposes of any study is the development of accurate mathematical models incorporating the more important factors involved in adsorption-desorption processes. These models, used to characterize adsorption bed behavior, provide an invaluable basis for design and optimization of improved beds.

#### ADSORPTION STEP

Adsorption may be defined as a phenomenon involving concentration of the adsorbable species at an interface. The interface is the thin region (on the order of molecular dimensions) between two bulk phases. The discussion below is concerned with the adsorption of a gas at the interface between a solid and the gas. In the extreme, the adsorption of a gas on a solid surface may be classified as (I) chemisorption and (2) physical adsorption. These are extremes; in some systems, neither category is entirely suitable. Both chemisorption and physical adsorption may occur simultaneously.

Chemisorption may be defined as a process in which a chemical bond is formed between a gas molecule, atom, or ion on the surface of the solid. Thus, chemisorption is a process involving a major electron transfer. The energetics of chemisorption are those characteristic of chemical bond formulation; the enthalpies of chemisorption may range upwards from 40 kcal per mole. Once the primary valence forces of the surface atoms or ions are satisfied, no further bonding can occur; chemisorption is thus restricted to the formation of a monomolecular layer of adsorbed gas on the surface of the solid. The thermodynamics of chemisorption are essentially reaction thermodynamics. The kinetics of chemisorption involve rate expressions in the concentration of gas and of surface sites; activation energies may be calculated from the variation of rate constant with temperature.

In physical adsorption the forces of interaction between the surface and the adsorbed gas molecule are those responsible for the formation of a condensed phase from a gas phase. The forces (van der Waal's forces) are considerably lower in magnitude than those responsible for bond formation and are shorter range forces. Physical adsorption occurs when the interaction energies are large with respect to thermal energy and is most pronounced at temperatures below the condensation temperature of the gas. The enthalpy of physical adsorption (except at extremely low surface coverage) is on the order of the enthalpy of condensation. Physical adsorption is usually polymolecular in nature. These two extreme types of adsorption are considered in further detail below, and attempts are made to point out the relation between thermodynamic properties, reaction kinetics, and adsorption and desorption phenomena.

The determination of these relationships will permit a better understanding of the basic phenomena involved in the adsorption processes and, therefore, will make possible the utilization of adsorbents particularly efficient in removing selected contaminants.

There exist basically two complementary avenues leading to the exploration and better understanding of the adsorption and desorption phenomena. One is concerned with the macroscopic equilibrium or statistical aspect of adsorption (thermodynamics and chemical kinetics), while the other deals with the microscopic aspect in which the individual adsorbate molecules are considered in relation to the adsorbent as a semiconductor (electronic theory of chemisorption) or as polarization and surface dispersion (physical adsorption).

Examples of the first approach follow below, which will yield some insight concerning the heats of adsorption. The microscopic aspect with regard to molecular sieves has been thrown open to controversy. For example, Benson and associates maintain that an electrostatic rather than a molecular size effect governs the adsorption selectivity of the molecular sieves. Others contest this assertion. The designated references B5, S5, and B3\* contain the details of this discussion.

## Thermodynamics of Adsorption

The thermodynamics of the reversible adsorption step are outlined in Appendix C for systems consisting of one adsorbate, and employing the method of "adsorption thermodynamics" which is equivalent to the method of "solution thermodynamics" and the Gibbsian "surface excess" method.

The variety of different treatments and the differing interpretations of surface energy and quantities of experimental significance arise from difficulties in suitably defining the surface of separation or surface of tension. As a case in point, some workers recently determined that the interfacial thickness and composition in it are not independent variables, but are governed by the thermodynamic necessity of minimizing the surface layer free energy. A comprehensive treatment of these problems is found in a monograph by Hill, HI4.

The remainder of this discussion supplements Appendix A in the light of the aforementioned viewpoints.

Equations (A-II) and (A-I2) of Appendix A furnish the thermodynamic bases for phase equilibrium and the adsorption isotherm, respectively. They will now be related to practical measurement of heats of adsorption.



<sup>\*</sup>The designated references are listed in the Bibliography part of Section 3.

<sup>\*\*</sup>Adsorption thermodynamics deals only with the adsorbate; i.e., the adsorbent is considered inert.

<sup>\*\*\*</sup> Solution thermodynamics considers both components, i.e., the adsorbent and the adsorbate.

Define

for the adsorbed phase.

By a Maxwell relation, neglecting changes in  $\mathbf{V}_{\mathbf{S}}$  or properly locating the surface in the Gibbsian manner,

$$\left(\frac{\partial \mu}{\partial T}\right)_{\Gamma} = -\left(\frac{\partial S_{\mu}}{\partial n}\right)_{T, \alpha}$$

Where constant a and n are replaced by their equivalent,  $\Gamma$ .

For the gas phase

$$\left(\frac{\partial \mu}{\partial T}\right)_{\Gamma} = -A_{G} + v_{G}\left(\frac{dP}{dT}\right)_{\Gamma} = -\left(\frac{\partial s_{L}}{\partial n_{L}}\right)_{T,a}$$

This is the analogue of Gibb's expression. T times the quantity in the numerator is the isosteric heat of adsorption  $(q_{st})$ . The same and other ensuing results follow from solution thermodynamics when the constant "a" condition is visualized as arising from the pure solid condition in the same state of subdivision as the adsorbent, Reference (H-I3); i.e., the specific surface  $(cm^2/gm)$  remains constant with the addition of more adsorbent.

Utilizing Equations (A-2) and (A-14) of Appendix A,  $q_d$ , the isothermal heat of adsorption with no PV work, can be expressed as follows:

Neglecting V as before,

$$\left(\frac{\partial E_{\Delta}}{\partial n}\right)_{T,\alpha} - T\left(\frac{\partial S}{\partial n}\right)_{T,\alpha} = \mu = e_{G} - T_{G} + P_{G}$$

or 
$$T\left[s_{G} - \left(\frac{\partial S}{\partial n}\right)_{T, \alpha}\right] = Q_{st} = \left[e_{G} - \left(\frac{\partial E_{s}}{\partial n}\right)_{T, \alpha}\right] + P_{st}$$

<sup>\*</sup>The symbols used in this discussion are introduced in Appendix A and are taken from the thermodynamical presentation found there.

The quantity  $\mathbf{q}_{\mathbf{d}}$  is commonly called the differential heat of adsorption. For isothermal reversible measurement of the heat of adsorption with external PV work, as is the common situation,  $\mathbf{q}_{\mathbf{th}}$  is obtained. Proceeding in a fashion similar to the last case,

$$\left(\frac{\partial H_{\Delta}}{\partial n}\right)_{T,a} - T\left(\frac{\partial S}{\partial n}\right)_{T,a} = \mu = h_G - T_{\Delta_G} - V_G\left(\frac{\partial P}{\partial n}\right)_{T,a}$$

$$h_{G} - \left(\frac{\partial H_{A}}{\partial n}\right)_{T_{A}} = q_{A} + V_{G}\left(\frac{\partial P}{\partial n}\right)_{T_{A}}$$

Multicomponent adsorption relations can be dealt with in a fashion analogous to that in Appendix A if Equation (A-2) is now written

# Surface Kinetics and Equilibrium (Isotherms)

The velocity of adsorption depends basically on three factors:

The rate of collision with the surface

The probability of collision on available sites

The activation energy E involved in adsorption

Several theories have been advanced for the adsorption process. One such theory, developed by DeBoer and coworkers, References D2 through D7, K10 and K11, deals with the residence time of an adsorbed molecule on the surface of the adsorbent; it is limited to very low surface coverages. Theories of the Langmuir type define the rate of adsorption in the following manner.

$$u = \frac{\sigma P}{\sqrt{2\pi m kT}} \cdot f(\theta) \cdot e^{-E/RT}$$

Similarly, for the rate of desorption

$$u' = K f'(\theta) e^{-E/RT}$$

where u = velocity of adsorption

u = velocity of desorption

 $\sigma$  = condensation coefficient

p = partial pressure of the adsorbate gas

m = mass of the gas molecule

k = gas constant

T = absolute temperature

 $f(\theta)$  = probability of collision at available sites

 $f'(\theta)$  = probability of escape from the sites

E = activation energy

 $\theta$  = fraction of surface covered

K = velocity constant

E' = sum of activation energy and heat of adsorption, E' = E + q

a = coefficient depending on temperature alone

q = heat of adsorption =  $q(\theta)$ , in general

At equilibrium  $u=u^{\,l}$ , and the equation of the adsorption isotherm may be written:

$$P = \frac{K}{6} \sqrt{2\pi mkT} \frac{f'(\theta)}{f(\theta)} \cdot e^{-\frac{\pi}{2}/RT}$$

Specific isotherms may be derived from this expression by inserting appropriate expressions for  $f(\theta)$  and  $f'(\theta)$ .

Among the assumptions Langmuir made in his work were:

- (a) The surface is homogeneously available.
- (b) No interference exists between adsorbed neighbors.

As a consequence,  $f'(\theta)/f(\theta)$  was taken equal to  $\theta/(1-\theta)$  and q independent of  $\theta$  and any inhomogeneities of the surface. The resulting expression, after combining the various constants together, is

$$\theta = \frac{cp}{1 + cp}$$

If it is further assumed, in the multilayer case, that q for the successive layers is the heat of liquefaction, the result is the BET equation, upon which one of the standard methods of surface area determination is based. If it is assumed that q falls logarithmically as  $\theta$  increases, another characteristic isotherm is obtained which describes better the adsorption phenomena in the case of surface heterogeneity (Freundlich isotherm). If, moreover, it is assumed that the heat of adsorption decreases linearly with  $\theta$ , a Tempkin isotherm is obtained which better describes the adsorption phenomena in particular cases. For substances with small pore radii such as some forms of silica gel, capillary condensation becomes important at fairly high coverages. The appropriate expression for this phenomena is given by Equation (A-I2) (see the presentation of the thermodynamics of adsorption in Appendix A).

These brief considerations illustrate the relationship between the shape of the adsorption isotherms and the phenomena of adsorption in relation to such parameters as number of vacant sites, number of adsorbed layers, etc. A fairly recent and complete review of these relationships is contained in Reference K10.

The following paragraphs constitute a brief review of the microscopic picture.

#### Chemisorption

Chemisorption may be considered as a process involving the formation of a chemical bond between the adsorbed gas molecule and an atom or ion on the surface of the solid. The enthalpy of adsorption is high; consequently, at equilibrium, there is a large difference in entropy between the adsorbed molecules and those in the gas phase. Chemisorption possesses the specificity characteristic of chemical reactions. If the chemisorption process is reversible, it may be treated by the conventional technics of classical thermodynamics; if the process is irreversible, the thermodynamic treatment must be based upon the energetics of chemical bond formation and an estimate of the nature of the bond formed in the adsorption process. Calorimetric methods are suitable for the determination of enthalpies for both the reversible and irreversible processes. Normally, chemisorption occurs slowly at very low gas pressures (less than  $10^{-7}$  torr); the kinetics are a function of the pressure. At pressures exceeding 10<sup>-6</sup> torr, the adsorption process is usually complete in a matter of seconds. Chemisorption, it is again emphasized, is restricted to the formation of a monomolecular layer of adsorbed gas.

The magnitude of the heat of adsorption is the most significant single property of a particular adsorption phenomenon because the determination of the entropies and enthalpies of chemisorption gives important information on the structure of the solid adsorbent, the nature of the surface bond, the amount of coverage, the possible catalytic activity, etc. Moreover, it must be noticed that there is evidence that each of the three main types of chemical bonds (the ionic, covalent, and co-ionic) may be formed in chemisorption. For ionic bonds, the ease of passage of electrons across the surface plane, i.e., the magnitude of the work function, may decide both the ease of formation and strength of the bond. Covalent bonds can be formed only if the adsorbent possesses orbitals with unpaired electrons capable of entering into covalence.

Coordination, with electron donation to the adsorbent, requires the latter to have a vacant orbital capable of receiving the pair. For this reason, the nature of the surface bond formed in the adsorption of a particular molecule depends very largely upon the electronic structure of the adsorbent.

The high heat of adsorption of CO<sub>2</sub> on the natural zeolite chabazite (ca 409 to 573 Btu per lb) reported by Kington and Macleod (Reference K4) appears consistent with the findings of Bertsch and Hubgood (Reference B6), i.e., that carbon dioxide is chemisorbed on the Linde X zeolites in the low coverage region. It is interesting to note that for a fully dehydrated Linde Type I3X molecular sieve, the adsorption of CO<sub>2</sub> is extremely slow at 25°C below 0.3 mm Hg (i.e., each isotherm point requires periods in excess of 60 hr to equilibrate). However, when a small quantity of water is initially present, true equilibrium is reached within minutes, probably as a result of the water molecules acting as a catalyst for the chemisorption step.

#### Physical Adsorption

The short-range forces responsible for physical adsorption may be further classified according to their origin into (I) dispersion forces, (2) dipole (or quadrapole)-dipole forces, (3) dipole-induced dipole forces, (4) ion-dipole forces, etc. Although the pair dispersion forces vary with the inverse sixth power of the distance between centers, the total interaction of a gas molecule with all the atoms in a solid is described in terms of an inverse fourth power relation (inverse third power in energy). The enthalpies of physical adsorption processes are on the order of enthalpies of vaporization. Physical adsorption is normally appreciable only at temperatures below the critical temperature of the adsorbate; the extent of adsorption increases with decreasing temperature. Adsorption generally leads to the formation of polymolecular layers at higher equilibrium pressures, and the pressure range in which appreciable physical adsorption occurs is generally considerably greater than the range for chemisorption.

Many theories have been advanced to explain physical adsorption. These theories cover a wide range. At one extreme is the establishment of a detailed model on a molecular basis and the application of statistical methods to obtain the observed thermodynamic functions; at the other, analogies are drawn between the behavior of films on solids and monomolecular films on liquid subphases. Here only a few of these theories are listed:

The Hill theory, which eventually leads to the partition function for the adsorbed molecule placed in the perturbing field of the surface. Reference HI4.

The potential theory, which is especially useful in correlating adsorption behavior as a function of temperature; the approach is quasi-thermodynamic. Reference PI.

The theory of Brunauer, Emmett, and Teller, which is actually an extension of the Langmuir treatment to polymolecular adsorption. This theory forms the basis for the most commonly employed method in the determination of the specific surface areas of solids. Reference B15.

The theory of Harkins and Jura, which is essentially a thermodynamic description of the surface phase in terms of an equation of state; this theory also affords a means for measuring the specific surface area of a solid. Reference H2.

Mention has already been made of the electrostatic theories of molecular sieves by Benson and coworkers, Reference B5.

#### ANALYSES OF ADSORPTION BED DYNAMICS

The six basic phenomena listed in the introduction will now be examined from the dynamic point of view.

The basic theories of material, energy and mass transport for a homogeneous phase, are fairly well understood. The understanding of interphase transport is not as well established, References B8, B9, B10, and B11. Most of the ideas of transport theory are derived from the thermodynamics of irreversible processes, References D9 and F1.

Many of the physical phenomena encountered in sorption bed analysis depend upon transport theory. Mass transport by diffusion and convection are among the most critical phenomena for the analysis. A general review of the literature (see Section 3, Resume of Literature), indicates that many operations carried out in fixed beds in which there is fluid-solid contact (such as ion-exchange, chromatography, and regeneration heat exchange with a bed of broken solids) involve similar phenomena and are directly applicable to sorption problems, since the fundamental mathematical analysis is the same.

#### Mass Balances

Based upon transport theory referred to above, mass balances in the fluid stream will be considered first. In considering the flow through the granular bed, overall macroscopic balances such as are detailed in Reference B9 are in order. However no information as to the adsorption process would be forthcoming. In the chapter on macroscopic balances of Reference BIO, however, a further refinement is made in which the volume space is subdivided into a fluid space and the solid space. Mass balances can then be written for each.

A general theoretical approach to diffusional mass transfer has been summarized in Appendix B for a homogeneous isotropic fluid with regular phase boundaries. In this case of the fixed bed, the same analysis has been applied to flow in the interstices of the packed bed.



Consider the flow of fluid through the bed whose fraction of voids is e\*. Let the average superficial velocity be v, i.e., the volumetric flow rate per unit cross-sectional area of the cylindrically shaped bed. It is assumed here that v is constant and in the direction of the cylindrical axis. As discussed in Appendix B, v, the average velocity based upon the partial specific volume average, can be taken to be constant in the axial direction, since the local acceleration terms vanish; and the pressure gradient is assumed not too great.

Further, let C be the mass concentration in the bulk fluid stream and R the overall rate of contaminant disappearance into the stationary phase per unit volume of bed. The rate of change of diffusive flux with distance postulated only in the axial direction was computed. In these calculations, the diffusion coefficient, which will be designated here as E, is differentiated from others discussed in Appendix B, when a regularly bounded phase was considered. E is commonly called the longitudinal dispersion coefficient for transport processes in packed beds and is frequently measured by tracer techniques. In general, it may be due to both molecular and turbulent transport.

By means of a mass balance analogous to the one described in Appendix B, the following is the most general equation written.

$$\epsilon \frac{\partial c}{\partial t} + v \frac{\partial C}{\partial x^2} + R_T = E \frac{\partial^2 c}{\partial z^2}$$
 (4-1)

Dispersion in all but the X direction is neglected. This equation states that the rate of change of the adsorbate in an element of bulk stream fluid plus the amount convected out, plus the rate of disappearance out of the bulk stream, is equal to the net diffusive influx into the element. Equation (4-1) is similar to most of the "one dimensional" diffusion equations. The critical term is  $R_{\mathsf{T}}$ , the rate of disappearance from the bulk stream. The manner in which  $R_{\mathsf{T}}$  is written varies throughout the literature depending upon the assumptions and simplifications that are made. An initial unified approach will be sketched here, and then the variations on the input variables will serve to introduce the approaches and simplifications reported in the references.

Before going on to examine this rate in detail, some variations of the preceding mass equation will be reviewed. Funk and Houghton, References F5, F6, and F7, in their analysis of gas-liquid partition chromatography rewrote Equation (4-1) above in terms of the mole fraction N and total pressure P.

$$\epsilon \frac{\partial N}{\partial t} = E \frac{\partial^2 N}{\partial X^2} - \left( v - \frac{2E}{P} \frac{\partial P}{\partial X} \right) \frac{\partial N}{\partial X} - R_M + \frac{EN}{P} \frac{\partial^2 P}{\partial X^2}$$
 (4-2)

<sup>\*</sup>Symbols are listed and systematically defined in the Nomenclature at the end of this section for the dynamical equations written henceforth.

This result is obtained if ideal gas laws are used in substitution for the concentration C where

$$C = \frac{PMN}{R_C T} \tag{4-3}$$

where M is the molecular weight of the contaminant and  $R_{\tilde{G}}$  the universal gas constant.  $R_{\tilde{M}}$  is the disappearance rate now in terms of the mole fraction. The assumption is made, of course, of isothermal operation. In addition, v is treated as a constant and the substantive derivative of P is assumed to be zero.

$$\frac{DP}{DT} = \frac{\partial P}{\partial t} + \sqrt{\frac{\partial P}{\partial X}} = 0$$
 (4-4)

The pressure drop gradient,  $\frac{\partial P}{\partial X}$ , is related by the authors to Darcy's law for the flow of fluids through porous media, Reference BII, p. 150.

$$v = \text{const} \frac{\partial P}{\partial X}$$
 (4-5)

Another approach in which the effects of pressure change are incorporated into the mass balance is the one used in AiResearch computer program \$9960 and described in Section 7. In it the time variation of pressure is not neglected so as to provide a basis of analysis for vacuum induced desorption. Pressure effects are introduced partly through the ideal gas laws and partly by incorporation of the factor F which relates the pressure drop in packed beds to the flow velocity by means of the Ergun equation, Reference BIO, p. 200. For our purposes

$$\mathfrak{F} = \frac{1}{v} \frac{\partial P}{\partial X} \tag{4-6}$$

While the initial material balance is written in terms of total fluid stream molar concentration  $\mathbf{C}_{\mathbf{M}^\bullet}$ 

$$\epsilon \left(\frac{\partial C_{M}}{\partial t}\right) = -\epsilon \frac{\partial}{\partial X} \left(C_{M} r\right) + m$$
(4-7)

By ideal gas law

$$C_{M} = \frac{P}{R_{G}T}$$
 (4-8)

The last expression is substituted for  $C_M$  in the left hand side of (4-7), while v is rewritten in terms of F as in (4-6). The velocity  $v^1$  is based upon flow in the void space.

The resulting expression is

$$\frac{\partial P}{\partial t} = \frac{P}{3} \frac{\partial^2 P}{\partial X^2} + \frac{P}{C_M} \frac{\partial}{\partial X} \left(\frac{C_M}{3}\right) \frac{\partial P}{\partial X} + \frac{P}{C_M \epsilon} m + \frac{P}{T} \frac{\partial T}{\partial t}$$
 (4-9)

Longitudinal dispersion, as can be seen, has been neglected. The dependence upon temperature called for explicitly by  $\frac{\partial T}{\partial t}$  and implicitly by m is provided by a simultaneous energy balance equation.

Both treatments involving pressure drop go on to link the transfer rates embodied in R<sub>T</sub> or m to conditions in the stationary phase in manners fairly typical of the literature summarized in Section 3, Resume of Literature. However, because of the linking of pressure drop and temperature variation directly into the fluid phase mass balance in a nonlinear fashion, the solutions are necessarily numerical and obtainable practically only by computer programs.

The rest of this section will be devoted to developing expressions for the material balance solution when changes in pressure drop and temperature can be neglected as during the adsorption part of a regenerable bed cycle. The interphase mass transfer concepts in the literature will also be illustrated thereby, and in addition, the analytical, closed form solutions will provide some insight as to the relative importance of the various dynamical steps.

#### Interphase Mass Transfer

Three major steps that remain to be examined are summarized in the introduction. They are repeated and amplified upon here for purposes of clarity.

# Mass Transfer Between the Fluid Stream and the Particles of the Adsorbent Bed

This process is termed "interparticle diffusion" by Masamune and Smith, Reference M5. It is usually written as a first order or linear rate law employing a rate constant that is the familiar "film coefficient" for interphase mass transfer at low transfer rates, Reference BII, Chapter 21.

#### 2. Diffusion Through the Pores of the Sorbent

This phenomena is termed "intraparticle diffusion" in Reference M5 by way of contrast with the preceding one. The major portion of the particle surfaces consists of an intricate network of pores whose boundaries constitute the extended surface area of the sorbents. Diffusion equations are written usually in terms of a pore diffusion coefficient. This coefficient can



usually be determined only experimentally, Reference M4. It is a true transport property only in the case of very fine and uniform pores (Knudsen diffusion, see Chapter XV of Reference D9). In most of the treatments in the literature, the particles are assumed to be of uniform size, spherical in shape, and with uniform pore structure. Diffusion equations are written in which only radial concentration gradients are taken into account. Kel'tsev, Reference K3, however, considers diffusion in cylindrically shaped particles in his studies of desorption of carbon dioxide and water from molecular sieves. Concentration gradients are formulated for both the cylindrically radial and the axial directions in the particles. He considers this mechanism exclusively.

# 3. Adsorption/Desorption Rates at the Extended Surfaces

This step of the process deals with the kinetics of alternately sticking or evaporating from the extensive surface area of the particles. Some approximations, in the literature assume such rapidity to this dynamic step that equilibrium relations as discussed in the beginning of this section are written for it (see Section 3, Resume of Literature). Other treatments assign either a first or second order rate law such as Langmuir kinetics to this step. Hill, Reference HI3, p. 217, shows that in the limit of low gas phase partial pressures the adsorption step is linear. The thermodynamics of irreversible processes also asserts that at states not too far from equilibrium, kinetic rate laws should be linear. It should be noted, however, that Hobson and Armstrong, Reference HI5, in their ultrahigh vacuum investigations were not readily able to confirm Hill's theorem.

Figures 4-I and 4-2 contain sketches of the steps and some of the customary analytical simplifications. Symbols are defined in succeeding text and the Nomenclature Section. Figure 4-3 represents a typical equilibrium isotherm at low surface coverage.

# Remainder of Interphase and Granular Particle Mass Transfer Analysis

Let  $k_F$  be the mass transfer coefficient from the bulk stream to the particle pores. The concentration of fluid diffusing through the pores of the particles that make up the bed is designated by  $\overline{C}$ . Then the following equation describes the transfer from the bulk stream to the fluid in the pores:

$$R_{T} = k_{F} A (C - C_{\alpha}) \tag{4-10}$$

where A is the total gross geometric area of the bed particles per unit volume and  $\mathbf{C}_{\mathbf{a}}$  is the concentration at the interface.



A-8581

Figure 4-1. Particle Arrangement in Fixed Bed (Particles of Sorbent Are Assumed to Be of Uniform Size and Arrangement in Bed)



A-8582 -A

Figure 4-2. Single-Particle Physical Parameters and Related Concentrations



Figure 4-3. Schematic of Typical Adsorption Equilibrium Isotherm at Low Coverage (Proportionate Law)

The mean external area of the particles per total volume of bed is expressed in the following manner.

$$A = \frac{4\pi\alpha^2(1-\epsilon)}{\frac{4}{3}\pi\alpha^3}$$

or

$$A = \frac{3(1-\epsilon)}{\alpha}$$

Consequently,

$$R_{T} = k_{F} \frac{3(1-\epsilon)(c-c_{a})}{a}$$
 (4-12)

The next step of the process is diffusion within or along the pores while matter is constantly adsorbing or desorbing on the surfaces of the pores.

In general in diffusion through the pores,  $\overline{C}$  is a function of the radial distances in a pellet as well as of the length along the bed X and the time t.

$$\bar{c} = \bar{c} (r, X, t) \tag{4-13}$$

The usual approximation that is made is that the diffusion in the pores is spherical and r, therefore, is the radial coordinate. What is meant, then, by the notation  $\overline{C}_a$  is the following:

$$\bar{c}_{\alpha} = \bar{c}(\alpha, \chi, t)$$
 (4-14)

where a is the mean particle size radius in the bed.  $\overline{c}$  is the interfacial concentration corresponding to the bulk fluid stream.

At steady state, the boundary condition on the pore diffusion from the surface can be related to  $\overline{\textbf{C}}$  in the pores by the familiar relation

$$\Phi D_{L} \frac{\partial \overline{C}_{a}}{\partial n} = k_{F} (C - C_{a}) \qquad (4-15)$$

where D; is the coefficient of pore diffusion. It may depend upon surface migration as well as volume movement through the pores, References M4 and M5.

The mass balance of the diffusing substance in the pores is similar to the one written for the bulk stream, except that spherical symmetry is now assumed and the average convective velocity is zero.\* If  $\phi$  is the porosity of the bed particle and  $\rho_p$  its density, the following may be written

$$\Phi \frac{\partial \bar{c}}{\partial t} + P \frac{\partial w}{\partial t} = \Phi D \left( \frac{\partial^2 \bar{c}}{\partial n^2} + \frac{2}{n} \frac{\partial \bar{c}}{\partial n} \right)$$
 (4-16)

where w is the mass adsorbed at the pore surface per unit mass of adsorbent.

Finally, the rate of change of w can be expressed in the equation that follows. (In this equation, w is given by a functional relation between C and w and includes some other possible parameters, such as the rate constant for adsorption k, the surface area per unit mass of adsorbent S, the monomolecular capacity  $w^{**}$ , and the adsorption equilibrium constant k.)

$$\frac{\partial w}{\partial t} = f(\bar{c}, w, w, k, K, S)$$

To give the preceding equation some substance, a particular example is set forth below. Assume a process of Langmuir kinetics. The rate of adsorption is proportional to the fraction of unoccupied surface and also to the concentration of adsorbate in the fluid. The rate of desorption is proportional to the amount of surface that is covered. The net rate of adsorption is then

$$\frac{1}{w^*} \frac{\partial w}{\partial t} = \frac{kS}{w^*} \left[ \bar{c}(w^* - w) - \frac{1}{K} w \right]$$
 (4-17)

For the case of low coverage depicted in Figure 4-3,

$$\frac{w}{w^*} \ll 1$$

<sup>\*</sup>Appendix B develops some of the justification for this assumption.

and for this approximation, the preceding equation assumes the linear form

$$\frac{1}{w^*} \frac{\partial w}{\partial t} = \frac{kS}{Kw^*} \left( Kw^* \bar{c} - w \right) \tag{4-18}$$

For boundary and initial conditions, the foregoing system of equations must be completed by assuming or postulating the initial and boundary conditions for the whole column of adsorbent bed.

In their more general form, these conditions are as follows: (I) at the beginning of the process the adsorbent particles may have some initial concentration distribution, and (2) the inlet stream may also have a time variation. As a consequence, the most general set of boundary and initial conditions is developed now.

For the concentration of the mobile bulk stream, the general initial condition may be written as  $\frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{2} \left( \frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{2}$ 

$$C(X, \sigma) = C_{\mathcal{L}}(X) \tag{4-19}$$

where  $C_{i}(X)$  is its initial concentration distribution. Also, the following relationship may be written

$$C\left(o,t\right) = C_{o}(t) \tag{4-20}$$

The preceding equation states that the inlet concentration is  $C_0(t)$ , in general, a function of time.

A natural assumption for the case where the fixed bed column is very long is that the concentration should approach zero at the exit, viz:

$$C\left(\infty,t\right)=0$$
 (4-21)

For the adsorbed species, the general initial condition could be taken as follows:

$$w(r, \chi, o) = w_{\widetilde{l}}(\widetilde{c}_{i}) \tag{4-22}$$

where the initial distribution  $\mathbf{w}_{i}$  is a function of  $\mathbf{r}$  and  $\mathbf{X}$  and can be related to that of the diffusing species concentration in the porous substructure.

For the concentration of diffusing species in the pores,

$$\bar{C}(n,X,o) = \bar{C}_{i}(n,X) \tag{4-23}$$

already has been implied as the initial condition, and

$$\frac{\partial}{\partial h} \bar{C}(o, X, \pm) = 0$$
 (4-24)

since  $\overline{C}$  is symmetrical with respect to the radius r of the porous bed particle. This last condition also assumes that Equation (4-16) will have a bounded solution at r=0. Finally, the boundary condition on C at the particle exterior r=a is Equation (4-15), where  $\overline{C}_a$  is defined by Equation (4-14).

Table 4-I is a summary of the general equations for fixed bed adsorption given thus far, plus some variations of them that are easily derived. These generalities, although formidable enough in their appearance, result nevertheless from the following simplifying assumptions.

The process is isothermal. The effects of heats of adsorption are neglected.

Only the adsorption of one component is considered. Thus, the effects of humidity, for example, have been ignored.

The density of the gas flowing through the bed is assumed constant.

The velocity is assumed to be constant over a cross-section normal to the longitudinal axis.

The velocity is unaffected by the rate of mass transfer to the stationary bed.

Radial diffusion of mixing in the mobile phase is neglected.

The effects of pressure drop on velocity are neglected.

Effective averages of particle size and pore volume are assumed.

On the basis of Equation (4-14), Equation (4-25) is an expression of the continuity of fluid phase interfacial concentration whether based upon the bulk stream or on the pore spaces.

# SUMMARY OF GENERAL EQUATIONS FOR ADSORPTION IN FIXED BEDS

$$\frac{\partial c}{\partial t} + \sqrt{\frac{\partial c}{\partial X}} + R = E \frac{\partial^2 c}{\partial X^2} \tag{4-1}$$

$$R = \frac{3(1-\epsilon)}{\alpha} R_{\epsilon} (c-c_{\alpha})$$
 (4-12)

$$C(\chi_{AO}) = C_{L}(\chi) \tag{4-19}$$

$$C(0,t) = C_0(t) \tag{4-20}$$

$$C(\infty,t) \cdot 0$$
 (4-21)

$$\phi \frac{\partial c}{\partial t} + \int_{P} \frac{\partial \omega}{\partial t} = \phi D_{c} \left( \frac{\partial^{2} \overline{c}}{\partial r^{2}} + \frac{2}{r} \frac{\partial \overline{c}}{\partial r} \right) \tag{4-16}$$

$$\overline{C}(r, X, o) = \overline{C}(r, X) \tag{4-23}$$

$$\frac{\partial}{\partial x} \bar{c}(o, X, t) = 0 \tag{4-24}$$

$$\bar{C}_{\alpha} = \bar{C}(\alpha, X, t)$$
 (4-14)

$$\Phi D_i \frac{\partial}{\partial r} \bar{C}_a = k_F (c - c_a)$$
(4-15)

$$n_{\mathbf{r}}(\mathbf{r}, \mathbf{x}, \mathbf{o}) = \omega_{\mathbf{r}}(\bar{\mathbf{c}}_{\mathbf{c}})$$
 (4-22)

$$\frac{\partial w}{\partial t} = \frac{kS}{w^*} \left[ \bar{c} \left( w^* - \omega \right) - \frac{w}{K} \right] \qquad (4-17)$$

## General Analytic Solution for Isothermal Sorption

Based upon the discussion just concluded for the various mass balances involved in sorption bed dynamics, the following is a resume of the analytic solution obtained keeping most of the generalities of Table 4-1. The details of how the solution was obtained are presented in References W4 and W6. Linear surface kinetics are assumed as in Equation (4-18) except that allowance

is made for a linear isotherm with possible nonzero intercept, w. Also, since total length of axial flow is assumed large compared to the width of the bed, the longitudinal dispersion term involving E has been neglected. If in addition one converts the time t to

$$t \rightarrow t - \frac{\partial X}{v}$$

Equation (4-1) then becomes

$$v \frac{\partial C}{\partial X} + R_{T} = O \qquad (4-26)$$

The restatement of the problem for the general analytic solution is presented in Reference W4.

#### NOMENCLATURE

## Symbols

- A A Exterior surface area of particles, length<sup>2</sup>
- a Average particle size radius in bed, length
- C Interparticle (external void space) concentration, mass/fength<sup>3</sup>
- C Intraparticle (pore volume) concentration, mass/length<sup>3</sup>
- $C_a$  Interparticle concentration at r = a defined by (4-14), mass/length<sup>3</sup>
- $\bar{c}_a$   $\bar{c}_\alpha$  Intraparticle concentration at r = a, mass/length<sup>3</sup>
- $\overline{C}_{O}$   $\overline{C}_{O}$  Constant intraparticle concentration at X = 0, mass/length
- $C_o$  Constant interparticle concentration at X = 0, mass/length<sup>3</sup>
- C; Reference interparticle distribution, mass/length<sup>3</sup>
- $\overline{C}_i$   $\overline{C}_{\lambda}$   $\overline{C}$  taken in reference to  $w_i$ , mass/length<sup>3</sup>
- $C_M$   $C_M$  Molar concentration of fluid phase, mole/length<sup>3</sup>
- D Cumulative dosage (concentration integrated over time) of exit fluid stream, dimensionless
- D: D: Intraparticle diffusion coefficient, length<sup>2</sup>/time
- $D_{AB}$   $D_{AB}$  Fluid stream (regularly bounded passages) diffusion coefficient for a binary system, length<sup>2</sup>/(time)
- E Interparticle diffusion (axial dispersion) diffusion coefficient, length<sup>2</sup>/(time)
- f Functional symbol such as y = f(x), dimensions: as defined
- F Factor relating pressure drop in (4-6) for packed beds to flow velocity, pressure/(length velocity)
- K Equilibrium constant for the surface reaction (adsorption) based on the pore volume, length<sup>3</sup>/mass
- k Rate constant for adsorption based on the pore surface, length/time
- k<sub>F</sub> Fixed bed bulk stream mass transfer (film) coefficient based on the external surface of the bed particles, length/time



## NOMENCLATURE (Continued)

## Symbols

- M Molecular weight, mass/mole
- m Mass of a diffusing component or mixture, mass
- m Rate of decrease of total moles in the fluid stream, moles/(volume time)
- N Number of moles of a diffusing component or mixture
- P Pressure of a mass transport system, force/length<sup>2</sup>
- R Cumulative retention on fixed bed, dimensionless
- $R_c$   $R_c$  Universal gas constant, energy/(mole, deg abs)
- R<sub>T</sub> Overall rate of removal of material from the interparticle bulk stream based upon the volume of the empty bed, mass/(length<sup>3</sup> time)
- r > Spherical radial coordinate of bed particle, length
- S Surface area (specific), length<sup>2</sup>/mass
- T Absolute temperature of a mass transport system, temperature
- t t Time variable, physical time less time for fluid stream to penetrate bed, &X/v, time
- υ V/ Superficial velocity of flow through bed, length/time
- V \ \ \ | Total volume, length<sup>3</sup>
- $v^0$   $v^o$  Partial specific volume fraction average velocity, length/time
- W Reduced form of w based upon bed standard condition, defined by (4-40), dimensionless
- w Amount adsorbed on fixed bed, mass/mass adsorbent, dimensionless
- wh w Intercept of general linear isotherm, mass/mass adsorbent, dimensionless
- $w_i$   $w_i$  Average bed standard condition, mass/mass adsorbent, dimensionless
- w\* Maximum value of w, total mass of adsorbate that can be adsorbed in a monolayer per unit mass of adsorbent, dimensionless



## NOMENCLATURE (Continued)

## Symbols |

- X Coordinate for axial position along bed, length
- € Gross void volume of packed bed, empty volume/total volume, dimensionless
- $\rho_p$   $\rho_p$  Density of bed particles (average), mass/length<sup>3</sup>
- $\phi$   $\phi$  Average pore volume of bed particles, pore volume/gross particle volume, dimensionless

#### **SUBSCRIPTS**

- a  $\alpha$  Denotes boundary condition at r = a
- av ar Denotes average over radius of bed particles
- o O Denotes boundary condition at either X = 0 or t = 0
- i  $\lambda$  Denotes scale factor at t=0
- A A Component A in binary mixture
- B B Component B in binary mixture

# Overhead Symbols

 In Appendix A, a partial molal quantity. Otherwise, it denotes concentrations in the pore volume where the mass fluxes are assumed to be relative to the specific volume average velocity (assumed to be negligible)

## Superscripts

Designates specific volume average for a quantity; used in Appendix A

#### SECTION 5

#### BASIC LABORATORY STUDIES

#### APPARATUS AND EXPERIMENTAL TECHNIQUE

## Equilibrium Isotherms

The adsorption equilibrium isotherms and differential heats of adsorption were determined by means of a gravimetric (McBain balance type) sorption apparatus. This apparatus is essentially a system in which the adsorbate is added incremently at constant temperature to the adsorbent. In this system, the adsorbent is suspended on a quartz spring balance and the change in weight of the sorbent and the system pressure are measured, thus obtaining adsorption isotherms. For the nonequilibrium desorption rate and isotherm, the system is opened slightly to vacuum.

The gravimetric sorption apparatus used in these studies is shown schematically in Figure 5-1, and a photograph of the apparatus appears in Figure 5-2. This apparatus consists of a vacuum system, a gas reservoir supply system, a liquid-vapor reservoir supply system, a weighing system, and a pressure measuring system. It should be noted that the liquid-vapor reservoir supply system is also used to purify the liquid. By means of distilling, freezing out, and evacuation, any absorbed gases were removed from the distilled water used for the water equilibrium adsorption studies.

In all of the tests, equilibrium, mass transfer, and vacuum desorption, the carbon dioxide used was high purity grade supplied by Liquid Carbonic Co. It had an analysis of 99.99 percent carbon dioxide, 32 ppm oxygen, and I.I ppm water.

The weighing system is essentially a helical quartz spring balance which extends with added weight. This quartz spring is kept at constant temperature by means of constant temperature water flowing through a jacket surrounding the spring. The linear expansion of the quartz spring is observed by means of a cathetometer which is capable of reading to 0.005 cm. Before any tests were made, the spring was calibrated with known analytical (Class S) balance weights placed in the quartz sample bucket. Calibrations were performed in both vacuum and air in order to determine any variation due to buoyancy; none were observed. For these tests two different springs were used because of accidental breakage of one of the springs in the middle of the series of tests. The first spring gave an average extension of 0.025 cm per milligram weight change over the weight range to 1 g, which is equivalent to 4 mg per millimeter extension, while the second gave an average extension of 0.0256 cm/mg, equivalent to 3.9 mg/mm.

The vacuum system, which is capable of obtaining pressures to 10<sup>-5</sup> mm Hg, consists of a Kinney vacuum forepump and a mercury diffusion pump. Pressure was monitored in the vacuum manifold by a Veeco thermocouple and ion gauge.



Schematic of Gravimetric Equilibrium Sorption Apparatus Figure 5-1.



AIRESEARCH MANUFACTURING DIVISION Los Angeles, California

Three pressure measuring devices, (1) a McLeod gauge, i.e., a standard for measuring gas pressure (Figure 5-3a), (2) a Televac thermocouple gauge (Figure 5-3b), and (3) a mercury manometer, were used to sense the system sample pressure. A dry ice-acetone trap was placed between the sample and the McLeod gauge and mercury manometer to prevent mercury contamination of the sample and thermocouple pressure gauge. The McLeod gauge was used for measuring system pressure in the carbon dioxide studies. Since the McLeod gauge cannot be used for condensables, the thermocouple pressure gauge and the mercury manometer were used in the water vapor studies. The Televac thermocouple gauge was calibrated against the McLeod gauge with dry nitrogen and corrections were made to the thermocouple readings for water vapor effects according to manufacturer's instructions. The Televac was used in the range of 0 to 600 microns (0.6 mm Hg); the mercury manometer was used to 13.1 mm Hg.

Operation of the gravimetric adsorption apparatus is relatively simple. As an example, a typical adsorption isotherm determination is performed as follows. Adsorbent is placed on the sample pan. A heating tape is wound around the sample tube and the unit is brought to the required regeneration temperature. At the same time that the sample is heated, it is also evacuated by the pumping system. The temperature is monitored by the thermocouple near the sample pan. After regeneration is complete, i.e., when there is no rise in system pressure after it has been closed off from the pumping system for at least 1/2 hour, the heating tape is removed, sample allowed to cool to room temperature, and the Dewar flask is placed in position. The proper refrigerant is placed in the Dewar flask, and the sample is cooled to the temperature of the refrigerant. After the sample is at the proper temperature, the sample weight is determined from readings of the expansion of the spring by the cathetometer. A small increment of gas or vapor is now added from the respective reservoir-supply system. After addition of the gas or vapor, periodic readings are made of the system pressure and position of the spring. After equilibrium is reached (i.e., when there is no change in system pressure and position of the spring over a period of time), another increment of gas or vapor is added to the sample system. This procedure is repeated until the entire pressure range of interest has been covered.

## Adsorption

As described in Section 4, the mechanism controlling adsorption may be film-diffusion, pore-diffusion, or surface reaction. The purpose of the dynamic study was to determine the simplest analytical technique for description of the process and the variation in the necessary coefficients with the experimental parameters.

Data required for determining the mechanism of mass-transfer and the appropriate coefficients were obtained by use of a dynamic adsorption apparatus. This type of apparatus consists of a system where gas or vapor is permitted to flow at known flow rates through a bed of adsorbent of known dimensions at constant temperature and pressure. In this apparatus there is an analytical instrument to determine the inlet and outlet concentrations of the gas or vapor.



The dynamic adsorption apparatus used in the mass transfer tests is shown schematically in Figure 5-4 and photographically in Figure 5-5. This apparatus consists of a vacuum system, a gas or vapor supply system, an analysis system, and a sample system. A schematic diagram of the sorbent bed system is given in Figure 5-6 and a close-up photograph is shown in Figure 5-7. The copper tube bed is 10 in. long and has an internal diameter of 5/8 in. Its interior is outfitted with 0.010-in.-thick copper fins for good heat transfer; to avoid channeling, the fins are alternately offset by 45 deg for each I-in. section throughout the bed. Pressure probes and thermocouples were placed at I-in. intervals throughout the length of the bed starting at 1/2 in. above the retainer screen at the bottom of the bed. Because of the high regeneration temperature and presence of water vapor, chromel-alumel thermocouples were used. Small open beads were exposed to the bed and were checked to ensure that they were not in contact with any metal surfaces. The lead wires were insulated with close packed magnesium oxide and sheathed with stainless steel tubing. The thermocouples of the bed were attached to an eight-channel Offner recorder with an ice bath as the reference junction.

The nitrogen and carbon dioxide flowmeters used were Fischer-Porter instruments with capacities of 2900 cc of nitrogen per min. and 30 cc of carbon dioxide per min., respectively. The accuracy of these flowmeters is 2 percent of full scale.

Inlet and outlet carbon dioxide concentrations were determined by two Beckman IR 15A infrared carbon dioxide analyzers. These analyzers monitored both inlet and outlet concentrations throughout the entire run. The output of the analyzers was recorded on a Brown two-pen recorder. Periodically during the series of tests the two IR analyzers were checked for calibration with known gas mixtures of carbon dioxide and dry nitrogen. Further, at the beginning and end of each run, the instrument zero, gain, and the calibration at the upper end of the scale were checked.

System pressure was determined by a Wallace and Tiernan absolute pressure gauge. This gauge was checked against a McLeod gauge prior to use. The system was kept at a reduced pressure by means of a Kinney vacuum pump in series with a Kinney blower. The combined vacuum system has a design capability of 1000 cfm at 10 microns of pressure.

Water vapor concentrations were determined by means of an AiResearch Dewpointer. This instrument measures dew point with an accuracy of  $\pm 3^{\circ}$ F, and has a range of  $\pm 150^{\circ}$ F to less than  $-100^{\circ}$ F.

Prior to placement in the sample bed holder, the adsorbent was heat treated at 150°C under vacuum in a vacuum furnace for two days and then carefully placed in a capped bottle in a desiccator to prevent contamination with water vapor. The capped bottle containing the adsorbent was weighed and then a portion of the adsorbent was placed in the sample bed holder until proper bed height was attained. The capped bottle was then reweighed and the sample weight in the bed was determined by the difference in weight. In this manner, sample weight could be obtained with a minimum of error due to contamination from water vapor in the air. The bed was packed with the aid of a vibrator to ensure a fairly uniform particle distribution.



Figure 5-4. Schematic of Dynamic Adsorption Apparatus



Figure 5-5. Photograph of Dynamic Adsorption Apparatus



Figure 5-6. Dynamic Sorption Test Bed





Figure 5-7. Instrumented Packed Adsorbent Bed



## Desorption

The process of vacuum desorption occurs in a somewhat different manner than does adsorption. During desorption, no inert gas is present after the first few seconds. Thus, there can be no film-diffusional resistance. Further, the pressure in the bed is an unknown function of axial distance and time. This pressure history may affect both the mass-transfer and heat-transfer rates, the latter due to the drop in gas phase conduction at low pressures.

For the above reasons, a detailed stepwise experimental program was required for the desorption studies--one which would first allow the identification of the rate-controlling step and then permit the determination of the parameters involved.

The dynamic desorption characteristics of water vapor and carbon dioxide from molecular sieve and water vapor from silica gel were determined using the sample bed and dynamic system described above. For these tests, only the sample bed system and the vacuum system portions of the dynamic adsorption apparatus were required. To provide a low-impedance vacuum system, the sample bed was modified. The test bed tubing was cut at a section below the retainer screen, a plug was inserted, and the unit was sealed with silver solder. The top section of the packed bed was modified to accept a 3/4-in. male AN fitting, and the unit was connected directly to the 3-in. vacuum manifold. The pressure pickup formerly located below the retainer screen, was installed in the vacuum manifold elbow section, directly above the bed. Flex-O-Lite glass beads with a 1-% 12 mesh (0.062 to 0.079 in.) were used to fill the bottom void volume of the sample bed; the remaining 5-in. upper section of the bed was packed with the test sorbent. Figure 5-9 shows the system as modified.

Pressures in the bed and manifold were measured using a four-channel CVC Magnevac GMA 140 thermal conductivity gauge (Figure 5-8a). Since this type of gauge is affected by the characteristics of the vapor measured, it was calibrated and monitored by a Texas Instruments precision quartz pressure gauge (Figure 5-8b). This instrument, which is not affected by the characteristics of the vapor being measured, was used to calibrate the Magnevac pressure gauges using pure carbon dioxide or water vapor, respectively. The accuracy of the Texas Instruments gauge was periodically checked by calibrating it against a McCleod gauge with dry nitrogen.

To conduct a desorption experiment, the glass beads and the test sorbent were initially outgassed (for a period over 16 hr) in a 150°C vacuum oven. After the sample bed was packed, the top retainer screen emplaced, and the glass bead and sorbent weights noted, the system was checked for leakage with a Vecco model MS-9 mass spectrometer leak detector. The volume occupied by the sorbent and the free volume of the test system were obtained by initially calibrating a pressure vessel with water and subsequently pressurizing the known volume source with helium and permitting it to expand into the bed and manifold. The relationship is expressed as follows:

$$P_1 V_1 = P_2 (V_1 + V_f)$$
 (5-1)







Figure 5-8. (a) CVC Magnevac GMA-140

Thermal Conductivity Gauge and (b) Texas Instruments Quartz Tube Gauge



Figure 5-9. Modified Desorption Apparatus

F-6434

where P, = initial helium source pressure

V, = calibrated source vessel volume

V, = system pressure after expansion

 $V_{\epsilon}$  = free volume of the packed bed

Upon completion of calibration, the bed would be regenerated (Figure 5-10) at a temperature of 600°F for molecular sieve and 350°F for silica gel and at a pressure of 7 microns, for a duration of several hours. The adsorbent was then brought to test temperature by means of a constant temperature bath (Figure 5-II). Pure carbon dioxide or water vapor was introduced to the sample bed through one of the unused pressure probes by means of a valve arrangement, and the bed was brought to a predetermined pressure. The bed and gas or vapor were allowed to come to equilibrium overnight; the temperature of the bath and bed were kept constant.

During initial studies, a known quantity of adsorbate gas or vapor was metered into the adsorbent bed by using the calibrated vessel technique. The amount of gas adsorbed was then checked by allowing for the vapor in the free volume previously determined, the difference between the amount discharged from the calibrated vessel and the amount in the free volume of the bed being the amount adsorbed in the bed. The amount of gas adsorbed was found to check quite closely with the equilibrium value obtained from the equilibrium data previously determined; thus, this procedure was simplified for most runs by using the loading values obtained from equilibrium data.

After equilibrium had been established and initial loading determined, the temperature desired for the desorption run was established in the bath surrounding the bed. The vacuum valve was then opened to vacuum and pressure readings were made at all four stations at frequent time intervals. Temperature data were recorded simultaneously and continuously on the Offner recorder. To determine loading at various times during the desorption run, the vacuum valve was closed, the bed allowed to equilibrate, and from pressure and temperature readings, loading was determined using equilibrium data. The run was then reinitiated. Final bed loading was again generally checked by allowing an overnight equilibrium.



Figure 5-10. Desorption Bed with Regenerator



Figure 5-II. Desorption Bed with Constant Temperature Bath

### EQUILIBRIUM ISOTHERMS

Equilibrium isotherms were determined for the adsorption of (1) carbon dioxide on Linde Co. molecular sieve, Type 5A  $[Ca_{4.5} Na_3[(AIO_2)_{12}(SiO_2)_{12}] \cdot 30 H_2O]$  and Type 5AXW; (2) water vapor on Type 5A molecular sieve; (3) carbon dioxide on water pretreated Type 5A molecular sieve; and (4) water vapor on Davison Co. silica gel (97 percent  $SiO_2$ ), Grade 05, 6-16 mesh. All molecular sieve tests were performed with 1/16 in.-diameter pellets. For the equilibrium determinations, prior to each adsorption run, the molecular sieve samples were desorbed, in situ, at  $600^{\circ}$ F under vacuum conditions ( $10^{-5}$  mm Hg), and the silica gel samples were desorbed, in situ, at  $350^{\circ}$ F under vacuum conditions.

### Carbon Dioxide Adsorption on Molecular Sieves

Initially, a preliminary isotherm was determined for carbon dioxide adsorption on Type 5A molecular sieve that had been regenerated at 400°F under vacuum conditions. The resultant data gave lower adsorption capacities than reported by Linde (Reference 5-I). Since Linde states that water may be removed, without damage to the molecular sieve by heating to 600°F, it was decided to regenerate at that temperature.

All of the molecular sieve equilibrium isotherms determined have been plotted with actual adsorption capacities obtained vs pressure; test data points appear in the figures presented in Appendix C.

Figures 5-12 and C-1 through C-4 give the four equilibrium isotherms obtained at  $0^{\circ}$ ,  $10.5^{\circ}$ ,  $25^{\circ}$ , and  $50^{\circ}$ C ( $32^{\circ}$ ,  $50.9^{\circ}$ ,  $77^{\circ}$  and  $122^{\circ}$ F), (Run Nos. 5 and 6, 7, 1-4, and 10, respectively) for the adsorption of carbon dioxide on Linde Type 5A molecular sieve I/I6-in.-dia pellets (Lot No. 551194). These isotherms are typical of the equilibrium data obtained, and as expected (1) adsorption capacity increases with lowering of temperature and (2) the general shape of the isotherms undergoes no discontinuity as the critical temperature of  $CO_2$  (31°C) is approached and passed. A comparison of the isotherms determined at AiResearch with isotherms given in Linde publications indicates that the former gave lower adsorption capacities than the latter. Further, data reported by Minneapolis-Honeywell (Reference 5-2) at 25°C seems to be between Linde and AiResearch's data. Due to the differences between the various sources of data, a sample of the same lot tested by AiResearch was sent to an outside laboratory (Pacific Sorption Service, Chico, California) for an adsorption isotherm determination at 25°C. The outside laboratory performed its determination using a volumetric technique by means of a B.E.T. apparatus. Their results gave adsorption capacities slightly lower than that obtained by AiResearch. A comparison of the 25°C isotherms determined by the four different sources is given in Figure 5-13. Also included are the capacities at approximately I and 7 mm Hg pressure determined by the dynamic breakthrough tests.

The discrepancies in the isotherms of Linde, Minneapolis-Honeywell, and AiResearch are probably due to differences in the production of the molecular sieve. Over the years, there have been changes in the manufacture of molecular sieves which gave different adsorption capacities. For example, different Linde publications have given different isotherms. Pacific Sorption Service's lower adsorption capacity data may be due to their desorbing the sample at





Equilibrium Isotherms of Carbon Dioxide Adsorption on Linde Molecular Sieve, Type 5A, 1/16-in.-dia Pellets Figure 5-12.



600°F for only one hour under vacuum conditions and, thus, not completely desorbing the pellets. At AiResearch, the pellets are desorbed at 600°F for several hours under high-vacuum conditions.

In an effort to determine any difference in adsorption capacities of different lots supplied by Linde, a carbon dioxide adsorption isotherm at 25°C was determined for a sample of Type 5A, I/I6-in.-dia pellets of Lot No. 54I259 (Run No. 8). This isotherm gave adsorption capacities just slightly larger than the previous lot. It is still considerably less than that reported by Linde. A new sample of the original Lot No. 55II94 was also tested (Run No. 9). Here, the 25°C carbon dioxide adsorption isotherm was identical to the previous isotherms obtained for this lot.

From the four isotherms shown in Figure 5-12, isobars and isosteres were plotted (Figures 5-14 and 5-15, respectively). Using these plots, new isotherms were calculated for 5°C, 18°C, and 37°C. Both isobar and isostere plots gave identical isotherms indicating consistent data. This comparison is given in Figure 5-16. An attempt to do this with isobars and isosteres obtained from Linde isotherms gave inconsistent data; two different curves were obtained.

The equilibrium isotherm at 25°C Figure 5-17, for Type 5AXW (Run No. 12) molecular sieve, I/I6-in.-dia pellets (Linde Lot No. 556313) gave higher adsorption capacities than Type 5A. These capacities varied from about 4 percent higher at 20 mm Hg pressure to about ten percent higher at a pressure of I mm Hg. At still lower pressures there was a further increase in percentage of greater CO<sub>2</sub> adsorption capacity. Even with the higher capacity obtained, this data was lower than that reported by Linde Company for Type 5A molecular sieve. At the present time, Linde could not provide equilibrium adsorption isotherm data for Type 5AXW molecular sieve. Although both types of material contain the same adsorbent, the amount of nonactive inert binder differs. The Type 5A material contains 20 percent binder, while Type 5AXW contains 7 percent binder.

The properties of the two types should be similar except that the higher density adsorbent in Type 5AXW pellets should give higher capacities than Type 5A pellets for the same weight of pellets. There is a difference in color of pellets; Type 5A is white, while Type 5AXW is yellow. Little was known about the stability of Type 5AXW pellets on long-duration cycling; it was felt that the lower amount of binder present in Type 5AXW would eventually result in powdering and breakdown upon continuous regeneration.

## Water Adsorption on Molecular Sieve

An equilibrium isotherm of the adsorption of degassed distilled water on Type 5A, I/I6-in.-dia pellets (Linde Lot No. 51194) at 25°C was made (Run No. II) (Figure 5-18 and Figure C-5). The adsorption data obtained gave an isotherm with lower water adsorption capacities than Linde reported. This difference again may be due to differences in production of the different lots tested; the Linde data are several years old.





Figure 5-14. Equilibrium Isobars of Carbon Dioxide Adsorption on Linde Molecular Sieve Type 5A, I/16-in.-dia Pellets Obtained from Figure 5-12





Equilibrium Isosteres of Carbon Dioxide Adsorption on Linde Molecular Sieve Type 5A, 1/16-in.-dia Pellets Obtained from Figure 5-12 Figure 5-15.







Equilibrium Isotherm of Water Vapor Adsorption on Linde Molecular Sieve Type 5A, 1/16-in.-dia Pellets at 25°C Figure 5-18.





# Effect of Residual Water on Carbon Dioxide Capacity of Molecular Sieve

In an effort to determine the effect of previously adsorbed water on molecular sieve on the further adsorption of carbon dioxide, an equilibrium carbon dioxide adsorption isotherm at  $25^{\circ}$ C was determined (Run No. 11A) on Type 5A, 1/16-in.-dia pellets containing a known amount of water (see Figure 5-19). Only a small amount of carbon dioxide was capable of being coadsorbed on the molecular sieve in this determination. For example, the sample containing 0.076 g  $H_2$ 0/g sieve, corresponding to an equilibrium partial pressure of water vapor of 0.0125 mm Hg, only adsorbed 0.0185 g  $C0_2$ /g sieve at a system pressure of 23 mm Hg, while dry molecular sieve adsorbed 0.10 g  $C0_2$ /g sieve at a system pressure of 23 mm Hg.

## Water Vapor Adsorption on Silica Gel

As a result of differences in experimental equilibrium data by various sources encountered during the molecular sieve phase of the program, an equilibrium isotherm at 25°C (Figure 5-20) was obtained for the adsorption of water vapor on silica gel (Davison Chemical, Lot No. 1807, 6-16 mesh, Grade 05) over a pressure range of 0.02 to 13 mm Hg. The isotherm obtained gave similar adsorption capacities for water vapor when compared with data presented by Davison (Reference 5-3). Additional equilibrium data for Davison silica gel with water vapor (Reference 5-4) is shown in Figure 5-21.

In an effort to quickly determine cycle reproducibility, four cycles of adsorbing water on silica gel at  $25^{\circ}\text{C}$  and approximately 7 mm Hg pressure and then desorbing at  $50^{\circ}\text{C}$  to approximately 0.2 mm Hg pressure were performed.

The results, summarized in Table 5-1, indicate that similar bed loads were obtained for both adsorption and desorption for all four cycles at equilibrium conditions.

TABLE 5-1

CYCLING DATA FOR ADSORPTION OF WATER VAPOR AT 25°C

ON SILICA GEL AND DESORBING AT 50°C

|           | Ads       | orption at 25°C                     | Desorption at 50°C |                        |  |  |  |  |
|-----------|-----------|-------------------------------------|--------------------|------------------------|--|--|--|--|
| Cycle No. | P (mm Hg) | Capacity (g H <sub>2</sub> O/g gel) | P (mm Hg)          | Capacity (g H₂O/g gel) |  |  |  |  |
|           | 6.8       | 0.1843                              | 0.220              | 0.0064                 |  |  |  |  |
| 2         | 6.5       | 0.1788                              | 0.218              | 0.0064                 |  |  |  |  |
| 3         | 6.7       | 0.1745                              | 0.228              | 0.0064                 |  |  |  |  |
| 4         | 6.8       | 0.1814                              | 0.183              | 0.0055                 |  |  |  |  |



Equilibrium Isotherm of Carbon Dioxide Adsorption on Water Treated Linde Molecular Sieve Type 5A, 1/16-in-dia Pellets at 25°C Figure 5-19.





Figure 5-20. Equilibrium Isotherm of Water Vapor Adsorbed on Davison Grade 05, 6-16 Mesh Silica Gel at 25°C



A-23584



- \*THE CONCEPT OF A DEW POINT BELOW 32°F, ALTHOUGH WIDELY ACCEPTED BY THE INDUSTRY, IS A MISNOMER; A SUBLIMATION POINT WOULD BE A MORE APPROPRIATE TERM.
- \*\*THE SATURATION TEMPERATURES CORRESPONDING TO PRESSURES BELOW 0.20 INCHES OF Hg HAVE BEEN CORRECTED ACCORDING TO REFERENCE 5-5.

Figure 5-21. Water Vapor Capacity of Silica Gel as a Function of Temperature at Various Partial Pressures, in. Hg (Equilibrium Isopiestics) as Reported by Davison Co. (Reference 5-4)

### Differential Heat of Adsorption

When a gas or vapor is adsorbed on the surface of a solid, or when a liquid wets an adsorbent, heat is released. The heats evolved are usually referred to as integral heats when a definite quantity of fluid and a bare surface are involved. The term differential heat is used to describe a process conducted at constant temperature whereby a unit quantity of fluid contacts a large quantity of solid that has been previously exposed to the fluid, i.e., a constant concentration (isosteric) process. In most instances the total heat evolved during adsorption is greater than the heat of liquefaction of an equivalent amount of vapor; this difference is referred to as a net heat of adsorption, or the heat of wetting.

As developed in Section 4, the isosteric or differential heat of adsorption may be determined from the Clausius-Clapyron equation (A-I7), assuming ideal vapor behavior;

$$\frac{d \ln P}{d \left(\frac{1}{T}\right)} = \frac{\Delta H}{R}$$
 (5-2)

where

P = partial pressure, psia

T = absolute temperature, <sup>0</sup>R

ΔH = isosteric or differential heat of adsorption, Btu/lb

R = gas constant, 1.987 Btu/lb mole OR

by plotting the log P vs I/T and determining the slope of the isostere. If the equation is integrated and rearranged as follows

$$\Delta H = R \frac{T_1 T_2}{T_2 - T_1} \ell n \frac{P_2}{P_1}$$
 (5-3)

the differential heat of adsorption may be determined from two close adsorption isotherms at  $T_1$  and  $T_2$  at the same adsorbent loading, for a range of loadings.

From the isosteres plotted for the adsorption of carbon dioxide on Type 5A molecular sieve pellets (Figure 5-15), differential heats of adsorption at  $T_1=32.2\ (90^{\circ}F)$  and  $T_2=37.8^{\circ}C\ (100^{\circ}F)$  were calculated for various bed loadings. This temperature regime is approximately the expected system design temperature for the desorption of carbon dioxide from molecular sieve. Figure 5-22 gives the relationship of the calculated differential heats of adsorption with bed loading. Initially, at low bed loadings (0.5 percent), the differential heat of adsorption is high, 511 Btu lb. This value drops rapidly with an increase of carbon dioxide loading until a loading of about 1.5 percent. Thereafter, the heat of adsorption value decreases very slowly, giving almost a constant heat of adsorption from 1.5 to 5 percent loading; the heat of adsorption values in this range only decreased from 419 Btu/lb to 414 Btu/lb.





Figure 5-22. Differential Heat of Adsorption at 95°F Based on Isosteres of Carbon Dioxide Adsorption on Linde Type 5A Molecular Sieve Pellets

#### DYNAMIC ADSORPTION STUDIES

Breakthrough curves were determined for (I) carbon dioxide adsorption on Linde Type 5A molecular sieve pellets for a variety of test conditions and (2) water adsorption on Davison Co. Grade 05 silica gel. When treated mathematically (see Section 7), these curves allow the evaluation of the controlling transfer coefficients. Originally it had been hoped that dynamic adsorption data for  $\rm CO_2$  on water loaded molecular sieve might be obtained; but results obtained during the equilibrium studies showed that very little capacity for  $\rm CO_2$  adsorption exists when even small amounts of water are present on the sieve, thus dynamic studies of molecular sieve were limited to adsorption of  $\rm CO_2$ .

#### Carbon Dioxide Adsorption on Molecular Sieves

The dynamic adsorption of carbon dioxide on Type 5A molecular sieve 1/16-in.-dia pellets (Linde Lot No. 551194) was determined under the following varied conditions: (I) mass velocity, (2) total pressure, (3) inlet carbon dioxide partial pressure, (4) bed temperature, (5) bed length, and (6) carrier gas. As in the equilibrium adsorption determinations, the molecular sieve sample was regenerated in situ at 600°F under vacuum conditions prior to each test.

Test data and results are summarized in Table 5-2 and are supplemented by the plots in the Appendix (Figures C-7 through C-38). There are two separate plots in the Appendix for each run; one gives the carbon dioxide concentration at sorbent bed inlet and outlet as a function of time and the other gives the percent breakthrough as a function of time. A typical plot of the inlet and outlet carbon dioxide concentrations with time, shown in Figures 5-23 and 5-24, gives the typical breakthrough curve obtained from such data.

The initial dynamic breakthrough tests were performed with a bed of about 7 in. in length. A comparison of the adsorption capacity of the bed obtained at 100 percent breakthrough with that obtained in the equilibrium isotherms indicated lower capacity in the dynamic tests. Preliminary analysis of the breakthrough data seemed to indicate that the mass transfer zone (MTZ) was about the same length as the bed. The mass transfer zone is designated as that portion of the bed in which adsorption currently occurs, and this zone of fixed length travels along the bed as the bed becomes saturated with adsorbate. A bed requiring a given capacity for adsorbate without allowing any unadsorbed material to leave the column must have, in addition to the amount of adsorbent necessary for the desired capacity at saturation, a length of bed where the mass transfer zone can travel without allowing absorbate to break through.

Mass transfer zone length can be calculated from the breakthrough curve, according to Trybal (Reference 5-9), by the following equation:

$$Z_{a} = Z \frac{\theta_{a}}{\theta_{E} - (I-f) \theta_{a}}$$
 (5-4)

TABLE 5-2

SUMMARY OF DYNAMIC CARBON DIOXIDE ADSORPTION ON MOLECULAR SIEVE TEST DATA AND RESULTS

| Percent | of<br>Equilibrium<br>CO <sub>2</sub> Adsorbed         | %.%            | 84.7    | 97.3   | 87.7      | 89.7    | 9.0     | 8.5    | <b>1</b> | 89.9     | 8.9     | 3.5     | 89.4     | - 28         | \$<br>4.8 | 0.001    | 0.16   |   |
|---------|-------------------------------------------------------|----------------|---------|--------|-----------|---------|---------|--------|----------|----------|---------|---------|----------|--------------|-----------|----------|--------|---|
|         | CO <sub>2</sub> Adsorbed, G CO <sub>2</sub> /G Sieve  | 0.0529         | 0.0492  | 0.0997 | 9,0504    | 0.0525  | 0.0524  | 0.0986 | 0.0493   | 0.0926   | 0.0526  | 0.0489  | 0.0235   | 0.0802       | 0.016     | 0.0065   | 0.0394 |   |
|         | Time to<br>100% Breakthrough<br>Min                   | 07             | 55      | 70     | 120       | 02      | 50      | 0      | \$6      | <u>8</u> | \$6     | 165     | ĸ        | 8            | 120       | 9        | 220    |   |
|         | Time to<br>Initial Breakthrough<br>Min                | 10.3           | 30.5    | 23.5   | 41.3      | 50      | S.S.    | 43,5   | <b>호</b> | 40.3     | 22.5    | 7.4     | 22.5     | 70           | 43        | 71       | 911    |   |
|         | Sample<br>wt., g                                      | 24.5           | 24.5    | 24.5   | 24.5      | 35.4    | 35.4    | 35.4   | 35.4     | 35.4     | 35.4    | 35.4    | 35.4     | 35.4         | 35.4      | 35.4     | 35.4   |   |
|         | Bed Length,<br>inch                                   | 7.2            | 7.2     | 7.2    | 7.2       | 0       | - 0     | 1.01   | 1.01     |          |         | 1.01    | 0        | . <u>o</u> . | 1.01      | -<br>0   | 10.1   |   |
|         | Bed Temp.,<br>oc (°F)                                 | 25 (77)        | 25 (77) | 0 (32) | . 25 (77) | 25 (77) | 25 (77) | 0 (32) | 25 (77)  | 0 (32)   | 25 (77) | 25 (77) | 50 (122) | 9.1 (48.4)   | 25 (77)   | 50 (122) | 0 (32) |   |
|         | Total<br>Pressure,<br>psia                            | 5.07           | 5. 10   | 5.08   | 7.05      | 5.08    | \$.08   | 5.08   | 5.08     | 5.08     | 5.08    | 7.07    | 5.08     | 5.08         | 5.08      | 5.07     | 5.08   | , |
|         | Av. Inlet<br>CO <sub>2</sub> Partial<br>Press., mm Hg | 7.15           | 7.13    | 7. 12  | 7.03      | 7.18    | 7.14    | 7.13   | 7. 19    | 7.25     | 7.20    | 6.91    | 7.21     | 7.01         | £0.1      | 8.       | ÷.     |   |
|         | Average Inlet<br>Mass Velocity,<br>Ib/ft² min         | 1.54           | 0.67    | 1.55   | 0.08      | 1.54    | 0.69    | 1.50   | 1.75     | 1.75     | 0.28    | 0.68    | 0.67     | 1.54         | 87.1      | 67.1     | 1.47   |   |
|         | Carrier                                               | N <sub>2</sub> | ž       | , Z    | ž         | , Z     | ××      | Z.     | ő        | ő        | ž       | ž       | ž        | ×            | 27        | X<br>Z   | ž      |   |
|         | . %c.                                                 | ~              | м       | 4      | 'n        | .0      |         | æ      | •        | 2        | =       | 2       | 5        | 2            | 5         | 5        | 2      |   |



Figure 5-23. Typical Plot Obtained from Experimental Data. This is Adsorption of  ${\rm CO_2}$  on Linde Type 5A Molecular Sieve Pellets at 25 $^{\rm O}$ C



Figure 5-24. Typical Breakthrough Curve Obtained from Experimental Data. This is Percent Breakthrough of CO<sub>2</sub> from Linde Type 5A Molecular Sieve Pellets at 25°C

67-1751 Page 5-34 where  $Z_a = MTZ$  length

Z = packed bed length

 $\theta_{\rm F}$  = time to bed exhaustion

 $\theta_{a}$  = time from initial breakthrough to bed exhaustion

f = fraction of the MTZ not loaded with adsorbate and is equal to the ratio of the area under the breakthrough curve to the total area between start of breakthrough and bed exhaustion.

In practice, one uses as start of breakthrough the time of 5 percent breakthrough and bed exhaustion when the breakthrough reaches 95 percent.

The MTZ length calculated by Equation (5-4) for Run No. 2 is 6.2 in., which is very close to the actual bed length. After increasing the packed column to about 10 in., the MTZ length calculated for Run No. 6, which was performed under the same test conditions as Run No. 2 except for bed length, gave a value of 5.3 in.

Increase of bed length, however, still gave the same lower adsorption capacity (approximately 10 percent) for the dynamic tests compared with the equilibrium studies. In order to determine if this difference in adsorption capacities is due to difference in the molecular sieve sample or test configuration, a volumetric determination was made of the equilibrium carbon dioxide adsorption capacity of the dynamic test bed, in situ. The results (0.0458 g  $\rm CO_2/g$  sieve adsorbed,  $\rm P=4.5~mm$  Hg,  $\rm T=23.7^{\circ}C)$  is the same as that obtained in the equilibrium studies. This indicates that the capacity differences are not due to either the sample or test configuration.

Since the possible effect of coadsorption of the carrier gas could explain the evident reduction in dynamic adsorption capacity, other carrier gases were investigated. Linde Company reported that Type 5A molecular sieve has an adsorption capacity for helium, oxygen, and nitrogen (at 0°C and 300 mm Hg) of 0.001, and 0.16, and 1.0 wt. percent, respectively. A series of dynamic tests, therefore, was performed with oxygen and helium, respectively, as carrier gases. The test results show that there was no difference in dynamic adsorption capacities between helium and nitrogen as carrier gases.

There was, contrary to expectations, a lower adsorption capacity (0.0493 g  $\rm CO_2/g$  sieve at  $\rm 25^{\circ}C$  and 0.0926 g  $\rm CO_2/g$  sieve at  $\rm 25^{\circ}C$  and 0.0986 g  $\rm CO_2/g$  sieve at  $\rm 25^{\circ}C$  and 0.0986 g  $\rm CO_2/g$  sieve at  $\rm 20^{\circ}C$ ) under the same pressure and flow conditions. An explanation for this phenomenon may be attributed to the velocity at which molecules traverse the zeolite channels; it appears to be remarkably fast and depends to a large degree on the size of the molecule concerned. Although the nitrogen molecule is only 0.2 Å larger than the oxygen molecule, this difference might allow greater oxygen coadsorption, causing a reduction in  $\rm CO_2$  capacity when using oxygen as the carrier gas (Reference 5-10). This effect should also occur since the helium molecule is smaller than the nitrogen molecule, but may be

offset in this case by the extremely low capacity of the molecular sieve for helium. As expected, the dynamic test data, summarized in Table 5-2, give higher adsorption capacities with lowering of temperature.

There appears to be no difference in capacity due to mass flow rates. Both tests at mass velocities of 1.54 and 0.69 lb/ft<sup>2</sup>-min at  $25^{\circ}$ C with nitrogen as carrier gas in the 10-in. packed bed gave the same adsorption capacity, 0.0525 and 0.0524 g  $C0_{2}/g$  sieve.

System pressure, on the other hand, seemed to have an effect. There is a lowering in capacity of 7 psia (0.0489 g  $CO_2/g$  sieve) over that at 5 psia (0.0525 g  $CO_2/g$  sieve) at the same test conditions (mass flow 0.69 lb/ft²-min; temperature,  $25^{\circ}C$ ; nitrogen, carrier gas; 10-in. packed bed; and approximately 7.0 mm Hg partial pressure of inlet  $CO_2$ ). This descrease in  $CO_2$  adsorption capacity as a result of an increase in the nitrogen partial pressure would tend to support the case for nitrogen coadsorption as a contributor to lower dynamic adsorption capacity.

Tests performed with inlet carbon dioxide partial pressures of about I mm Hg gave the same lowering of adsorption capacity, approximately IO percent, at complete breakthrough as the 7mm Hg inlet carbon dioxide partial pressure tests.

#### Water Vapor Adsorption on Silica Gel

The dynamic adsorption of water vapor on silica gel (Davison Chemical Lot No. 1807, 6-16 mesh, Grade 05) was determined at two different temperatures. Prior to each determination the silica gel bed was regenerated at 350°F under vacuum conditions. Since Hougen and Marshall (Reference 5-11) have performed an extensive theoretical analysis of the adsorption of water vapor from air by silica gel, a corroboration of the experimental data of two different temperatures was considered adequate at this time.

Test data and results are summarized in Table 5-3 and are supplemented by the plots in the Appendix (Figure C-39 through Figure C-42). There are two separate plots in the Appendix for each run; one gives the dew point at sorbent bed inlet and outlet as a function of time and the other gives the percent breakthrough as a function of time. These plots are similar to the typical plots shown in Figures 5-23 and 5-24 for carbon dioxide adsorption.

Although data are given for only two runs (Run No. IW and 4W) in Table 5-3, there were actually four determinations made. In Run No. 2W, the inlet dew point varied considerably during the determination and analysis of the data; therefore, it did not give any meaningful information. At the conclusion of Run No. 3W it was found that the dew point measuring device had become defective some time during the run and was giving erroneous dew points.

As expected, the dynamic adsorption capacity at 100 percent breakthrough decreased with temperature from 0.354 g  $\rm H_2O/g$  gel at 15.6°C to 0.235 g  $\rm H_2O/g$  gel at 25°C. A comparison of the adsorption capacity at 25°C with the experimental equilibrium adsorption isotherm indicates that dynamic water vapor adsorption on silica gel exhibits the same lowering of capacity shown by



dynamic adsorption of carbon dixoide by molecular sieve. The dynamic adsorption data for silica gel we relower than the equilibrium adsorption data (0.295 b  $\rm H_2O/g\ gel)$  obtained by AiResearch.

TABLE 5-3

SUMMARY OF DYNAMIC WATER VAPOR ADSORPTION
ON SILICA GEL TEST DATA AND RESULTS

| Run Number .                                           | IW             | 4W                                    |
|--------------------------------------------------------|----------------|---------------------------------------|
| Carrier Gas                                            | N <sub>2</sub> | N <sub>2</sub>                        |
| Average Inlet Mass Velocity, (lb/ft²-min)              | 1.53           | 1.50                                  |
| Average Inlet Dew Point,<br><sup>0</sup> F             | 53.5           | 49.3                                  |
| Average Inlet H₂O Partial Pressure,<br>mm Hg           | 10.41          | 8.89                                  |
| Total Pressure, psia                                   | 5.14           | 5.08                                  |
| Bed Temperature, °C (°F)                               | 25 (77)        | 15.6 (60)                             |
| Bed Length, in.                                        | -10            | 10                                    |
| Sample Wt,<br>g                                        | 33.75          | 33.75                                 |
| Time to Initial Breakthrough, minutes                  | 126            | 255                                   |
| Time to 100% Breakthrough, minutes                     | 300            | 460,                                  |
| H <sub>2</sub> O Adsorbed,<br>g H <sub>2</sub> O/g gel | 0.235          | 0.354                                 |
|                                                        |                | · · · · · · · · · · · · · · · · · · · |

#### DYNAMIC DESORPTION STUDIES

#### Scope

While the techniques for evaluating the controlling parameters for mixed-gas adsorption are reasonably well known (see Section 4), the same is not true for vacuum desorption. A preliminary series of runs yielded a qualitative estimate of the desorption rates. The more controlled series of experimentation was specifically designed to identify the controlling desorption step.

#### Preliminary Runs

A summary of the vacuum desorption test conditions for the preliminary series of runs conducted is reported in Table 5-4.

TABLE 5-4
VACUUM DESORPTION TEST CONDITIONS

| Run<br>No. | Adsorbent       | Adsorbate        | Bed<br>Height<br>in. | Bed<br>Weight<br>g | Initial P<br>mm Hg | Desorption<br>Bath<br>Temperature<br>OC |
|------------|-----------------|------------------|----------------------|--------------------|--------------------|-----------------------------------------|
| 3 SG       | Silica Gel      | H <sub>2</sub> O | 10                   | 33.75              | ~22**              | 50                                      |
| 4 SG       | Silica Gel      | H <sub>2</sub> O | 10                   | 33.75              | 7.4                | 25                                      |
| 1 MS       | Molecular Sieve | CO2              | 5                    | 17.05              | 8.8                | 25                                      |
| 2 MS       | Molecular Sieve | CO <sub>2</sub>  | 5                    | 17.05              | ~20*               | 50                                      |

<sup>\*</sup>The bed was loaded with adsorbate at  $25^{\circ}$ C, and then, at the start, a  $50^{\circ}$ C bath was placed around the sample bed.

Figures 5-25 through 5-28 give the pressure histories of the test bed for each run. Adsorption of the adsorbate for each case was performed at  $25^{\circ}\text{C}$ ; for the  $50^{\circ}\text{C}$  desorption tests, the constant temperature bath around the sample bed was changed prior to the start of the run to one containing water at  $50^{\circ}\text{C}$ .

The temperature profiles of both silica gel (Figures 5-29 and 5-30) and molecular sieve (Figures 5-31 and 5-32) beds suggest, as expected, that the vacuum end of the bed is desorbed first and a "desorption wave" propagates through the bed. Tests were performed to ensure that the thermocouples were not in contact with the metal heat transfer surfaces.



Figure 5-25. Bed Pressure Profile for the Isothermal Vacuum Desorption of Water Vapor from Davison Grade O5, 6-16 Mesh Silica Gel at 50°C



Figure 5-26. Bed Pressure Profile for the Isothermal Vacuum Desorption of Water Vapor from Davison Grade 05, 6-16 Mesh Silica Gel at 25°C









Figure 5-28. Bed Pressure Profile for the Isothermal Vacuum Desorption of CO<sub>2</sub> from Type 5A, Linde Molecular Sieve, 1-16-in.-dia Pellets at 50°C



Figure 5-29. Bed Temperature Profile for the Isothermal Vacuum Desorption of Water Vapor from Davison Grade 05, 6-16 Mesh Silica Gel at 122°F





Figure 5-30. Bed Temperature Profile for the Isothermal Vacuum Desorption of Water Vapor from Davison Grade 05, 6-16 Mesh Silica Gel at 77°F





Figure 5-31. Bed Temperature Profile for the Isothermal Vacuum Desorption of CO<sub>2</sub> from Type 5A Linde Molecular Sieve, 1/16-in.-dia Pellets at 77°F



Figure 5-32. Bed Temperature Profile for the Isothermal Vacuum Desorption of CO<sub>2</sub> from Type 5A Linde Melecular Sieve, I/16-in.-dia Pellets at I22°F

Desorption at the higher temperature (50°C), of course, gave higher desorption rates and, consequently, larger temperature changes in the bed than desorption at 25°C. The initial temperature change at the vacuum end of the bed is greater in the desorption of water vapor from silica gel than in the desorption of the carbon dioxide from molecular sieve. This is understandable since the heat of adsorption of water vapor on silica gel is about three times greater than the heat of adsorption of carbon dioxide on molecular sieve.

### Determination of Controlling Step

At the conclusion of this preliminary series it was clear that some understanding of the controlling phenomena during vacuum desorption was needed. A series of tests was structured to provide a measure of the importance of mass transfer, heat transfer, desorption pressure (momentum), temperature level, and particle size. Thus, a matrix of tests was arranged for CO<sub>2</sub> desorption from molecular sieve, as shown in Table 5-5, to provide comparative data with which to assess the influence of these variables.

TABLE 5-5
TEST MATRIX

| Test | Bath Temperature<br>°C  | Initial Loading<br>Percent | Particle Size,<br>in. | Vacuum<br>Source |
|------|-------------------------|----------------------------|-----------------------|------------------|
| А    | 50                      | 8                          | 1/16                  | Low              |
| В    | 25                      | 8                          | 1/16                  | Low              |
| С    | .50                     | 1                          | 1/16                  | Low              |
| D    | Insulated adiabatic bed | 8                          | 1/16                  | Low              |
| E    | 50                      | 8                          | 1/16                  | Throttled        |
| F    | 50                      | 8                          | 1/8                   | Low              |

By comparing the results of tests A and C, the influence of mass transfer could be determined; A and D, heat transfer; A and E, desorption pressure, A and B, temperature level; and A and F, intraparticle diffusion.

## Carbon Dioxide Vacuum Desorption from Molecular Sieve

The individual tests are displayed in Appendix C, Figures C-43 to Figure C-53; the results are summarized in Table 5-6 and Figure 5-33. Examination of the data shows the relative ease of  $\rm CO_2$  removal from molecular sieve by vacuum desorption. Over 70 percent of the initial quantity of  $\rm CO_2$  present on the sieve is removed during the first 10 min of a 30 min run at  $\rm 25^{\circ}C$ . This percentage of  $\rm CO_2$  removal (within the first 10 min) increases to almost 90 percent when the temperature is raised to  $\rm 50^{\circ}C$ . Specifically, the influences of the variables outlined previously were as follows:

TABLE 5-6

VACUUM DESORPTION OF CO2 FROM LINDE TYPE 5A MOLECULAR SIEVE PELLETS

| Test<br>No. | Pellet Diameter,<br>inch | Initial CO <sub>2</sub> Loading<br>g CO <sub>2</sub> /g Sieve (mm Hg) | Desorption<br>Temperature, <sup>o</sup> C | Final CO <sub>2</sub> Loading,<br>g CO <sub>2</sub> /g Sieve (mm Hg) | Desorption<br>Time, Min. |
|-------------|--------------------------|-----------------------------------------------------------------------|-------------------------------------------|----------------------------------------------------------------------|--------------------------|
|             | 91/1                     | 0.062 (7.98)                                                          | 25                                        | 0.007 (.241)                                                         | 30                       |
| 7           | 91/1                     | 0.0625 (8.1)                                                          | 20                                        | 0.001 (0.027)                                                        | 30                       |
| ю           | 91/1                     | 0.0625 (8.1)                                                          | 50                                        | 0.004 (0.120)                                                        | 9                        |
| 4           | 91/1                     | 0.065 (8.74)                                                          | 50                                        | 0.0035 (0.085)                                                       | 30                       |
|             |                          |                                                                       | (Throttled Vacuum)                        |                                                                      |                          |
| က           | 1/16                     | 0.0135 (0.69)                                                         | 20                                        | 0.001 (0.030)                                                        | 30                       |
| •           | 1/16                     | 0.0625 (8.15)                                                         | (Adiabatic(Ambient)                       | 0.007 (0.258                                                         | 30                       |
| 7a          | 1/16                     | 0.066 (8.9)                                                           | 25                                        | 0.038 (3.48)                                                         | 8                        |
| ۵           |                          | (Accidently bled air                                                  | 25                                        | 0.027 (1.97)                                                         | α.                       |
| v           |                          | 0.027 (1.97)                                                          | 25                                        | 0.019 (1.15)                                                         | 8                        |
| ס           |                          | 0.019 (1.15)                                                          | 25                                        | 0.0155 (0.84)                                                        | 2                        |
| 8<br>8      | 91/1                     | 0.0625 (8.17)                                                         |                                           | 0.025 (1.74)                                                         | က                        |
|             |                          |                                                                       | Throttled Vacuum                          |                                                                      |                          |
| ٩           |                          | 0.025 (1.74)                                                          | 25                                        | 0.007 (0.251                                                         | 52                       |
| 9a          | 91/1                     | 0.0625 (8.15)                                                         | 25                                        | 0.0175 (1.04                                                         | 80                       |
| Q           |                          | 0.0175 (1.04)                                                         | 25                                        | 0.010 (0.399)                                                        | 6                        |
| U           |                          | 0.010 (0.399)                                                         | 25                                        | 0.0055 (0.188)                                                       | 13                       |
| ט           |                          | 0.0055 (0.188)                                                        | 25                                        | 0.0035 (0.094)                                                       | - 5                      |
| 0           | 1/16                     | 0.062 (8.0)                                                           | 200.5                                     | 0.001 (0.025)                                                        | 7<br>8<br>7              |
| - I         | 8/1                      | 0.0625 (8.15)                                                         | 25                                        | 0.035 (3.04                                                          | 7                        |
| Ω           |                          | 0.035 (3.04)                                                          | 25                                        | 0.013 (0.64)                                                         | ∞.                       |
| υ           |                          | 0.013 (0.64)                                                          | 25                                        | 0.007 (0.258                                                         | δ                        |
| סי          |                          | 0.007 (0.258)                                                         | 25                                        | 0.0037 (0.109)                                                       | 13                       |

Vacuum Desorption of CO<sub>2</sub> from Linde Type 5A Molecular Sieve Figure 5-33.



- (a) Mass Transfer--Comparison of Runs 2 and 5 showed no difference in final loading between an initial loading of 8 percent and I percent.
- (b) Heat Transfer--Comparison of Runs 2 and 6 showed the influence of heat transfer (which actually reflects the dependence on temperature level). At the end of 30 min the adiabatically desorbed bed had 0.7 percent loading while the bed held at 50°C had 0.1 percent loading.
- (c) Desorption Pressure--Very little ifference was detected between Runs 2 and 4. As can be seen in Figures C-44 and C-46, pressure in the vacuum manifold during Run 2 was approximately 10 microns, while during Run 4 pressure was held above 350 microns. Pressures within the bed during Run 4 is correspondingly higher, with minor influence on desorption. Later, test series 8 (Figure C-50) using a lower flow vacuum pump, while maintaining manifold pressures in the 40 to 100 micron range, again showed only minor difference.
- (d) Temperature Level--This parameter has the most influence of those measured. Differences between 50°C and 25°C runs, such as Runs I and 2, show this dependence.
- (e) Particle Size--Comparison of the final loading after desorption between Runs 9 and 11 shows very little difference. It had been theorized that if the basic phenomenon was pore diffusion-limited, the larger particle having longer pores would exhibit a lower rate. Actually, a slightly higher rate was detected.

The quantitative determination of the parameters necessary for description of the desorption process is described in Section 7.

# Water Vapor Vacuum Desorption from Silica Gel

A series of desorption tests of water vapor from silica gel was conducted using the same test bed and test technique used to study the desorption of  $CO_2$  from molecular sieve. Test data are summarized in Table 5-7 and Figure 5-34. The individual test results appear in Appendix C, Figures C-54 to Figure C-61. Temperature appears to be the most significant factor in the removal of water vapor from silica gel by vacuum desorption. With a  $H_2O$  vapor concentration of approximately 6 wt percent present on the gel, a 30 minute desorption at  $25^{\circ}$ ,  $38^{\circ}$ , and  $50^{\circ}C$  reduced the initial water vapor concentration by 55, 79, and 88 percent, respectively. A change in the particle size produced results similar to that encountered during the molecular sieve,  $CO_2$  removal test series; i.e., water vapor was removed at a slightly higher rate for the larger (3-8 mesh) granules then the 6-16 mesh gel.

TABLE 5-7

VACUUM DESORPTION OF H20 VAPOR FROM DAVISON SILICA GEL GRANULES

| Desorption<br>Time, Min.                                                 |     | 1   | ഹ :          | 2     | 5   | ഹ :          | 2 | -2      | ഗ       |                  | <u>o</u>   | -5         | ഗ           |                  | 2           | - 12               | 'n        | 2          | <u>5</u>           | 'n                  | 2                | ī           | 8      | ω           | 50     |        |                | 0             | 15         |
|--------------------------------------------------------------------------|-----|-----|--------------|-------|-----|--------------|---|---------|---------|------------------|------------|------------|-------------|------------------|-------------|--------------------|-----------|------------|--------------------|---------------------|------------------|-------------|--------|-------------|--------|--------|----------------|---------------|------------|
| Final H <sub>2</sub> O Vapor Loading<br>g H <sub>2</sub> O/g GEL (mm Hg) | 1   | :•  | <u> </u>     | (0.82 | _   | 0.0314 (3.4) | _ | (0.066) | _       |                  | 0.0155 (1. | <u>00</u>  | 0.034 (3.7) |                  | 0.016 (1.2) | 0.007 (0.060) 25°C | (2.5) 38° | (1.08) 38° | $(.155)25^{\circ}$ | t) 0.044 (1.14) 25° | 0.036 (0.86) 25° | (0.550) 25° | _      |             | (0.42) | $\sim$ | 0.0322 (3.5) 5 | $\overline{}$ | $\sim$ $ $ |
| Desorption<br>Temperature, <sup>o</sup> C                                |     |     | 25           |       | •   | 20           |   |         | 20      | Throttled Vacuum |            |            | 20          | Throttled Vacuum |             | •                  | 38        | ;          |                    | Adiabatic Ambien    |                  |             | 50     |             |        |        | 20             |               |            |
| Initial H <sub>2</sub> 0 Vapor Loading a H <sub>2</sub> 0/a GEL (mm Hq)  |     |     | 0.0575 (1.8) | ``    | _   |              | · |         |         |                  | (3.6)      | -          | (8.6)       |                  | 0.034 (3.7) | <i></i>            | (         | (v. c)     | (80 -)             | (181)               |                  | · c         | (6.8)  | 0.00% (5.6) | ,      | ٥      | 0.062 (9.2)    |               |            |
| Granule,                                                                 | 100 |     | 4            |       | •   | 05 6-16      |   |         | 05 6-16 |                  |            |            | 05 6-16     |                  |             |                    | A1-A      |            |                    | 75 4-14             | 0.00             |             | 71 - 7 |             |        | ,      | 21.8           |               |            |
| Test                                                                     | -   | - ~ | . 3a         |       | · ( | ) e          |   | 3 (     | מינ     | }                |            | <b>3</b> ( | ה כ<br>צ    | 3                | ۲.          | ) (                | ) ر       | rg -       | ۰ ۵                | ، د                 | о<br>О           | ο (         | ن د    |             | α !    | υτ     | B C            |               | ο <b>υ</b> |



PERCENT OF INITIAL HEO VAPOR CONCENTRATION DESORBED



Figure 5-34.

Vacuum Desorption of H<sub>2</sub>O Vapor from Davison Silica Gel

# Water Vapor Vacuum Desorption from Molecular Sieve

Preliminary studies indicated that the desorption of water vapor from a poisoned molecular sieve bed would present a fundamental problem in rate kinetics and would have to be investigated to complete the regenerable CO2 removal system design analysis. The series of tests conducted, involving the vacuum desorption of water vapor from molecular sieve, is listed and the results are summarized in Table 5-8 and Figure 5-35. The individual test results are presented in Appendix C, Figures C-62 through C-73, Examination of Figure 5-35 shows the pronounced effect of temperature and vacuum desorption time on the removal of vapor from a water vapor poisoned molecular sieve. Temperatures in excess of 200°C are required for regeneration of a water vapor poisoned molecular sieve bed. It is interesting to note that in studies conducted by Kel'tsev (Reference 5-12), the water vapor removal rate from synthetic zeolites was inversely proportional to the squares of the grain diameters, indicating that pore diffusion is the controlling factor in the removal of water vapor from pure molecular sieve granules. The present studies, on molecular sieve suspended in an inert matrix, do not yield these results.

It should be noted that, although the level to which the sorbent is loaded with water remains rather high, the initial rate of desorption is high. Also, the final loading is within experimental error of being exactly that at equilibrium.

## Discussion of Test Results

As described in the review of dynamic adsorption tests, a consistent reduction in capacity was noted when-compared with equilibrium data for both  ${\rm CO_2}$ on molecular sieve and water vapor on silica gel. While the type and total pressure of the carrier gas had an effect, a fundamental reduction below equilibrium capacity always occurred. It became obvious that this reduction was a mechanism limitation peculiar to the dynamic adsorption process, i.e., rate dependent. The adsorption of carbon dioxide on molecular sieve zeolites appears to be of three different types (Reference 5-11): physical adsorption, chemisorption, and adsorption by an ion-dipole interaction or polarization (Reference 5-12) caused by the actions in the zeolite. In the current area of interest, i.e., pressures and temperatures exceeding 0.3 mm Hg and 0°C, respectively, physical adsorption is of primary importance in the adsorption of carbon dioxide on molecular sieve. In general there are three rate-determining mechanisms (I) gas phase external mass transfer diffusion from the fluid stream to the outer surface of the particle, (2) gas-phase pore diffusion, and (3) surface adsorption (or sticking) in the pores. In desorption tests conducted with I/8th and I/16th-in. O D particles, no significant difference in the rate of desorption was observed using CO2 and Type 5A molecular sieve. Thus, mechanism (2) would not seem important.

If mechanism (I) is controlling, the mass transfer rate would be expected to increase inversely within the 1.5 power of the particle diameter. If mechanism (2) is controlling, one would expect the mass transfer rate to vary inversely with the square of the particle diameter. During the laboratory test program it was noted that the time required to reach equilibrium was fairly



TABLE 5-8

DESORPTION OF WATER VAPOR FROM A 5/8-IN.-DIA BED OF I/16-IN.-DIA LINDE TYPE 5A MOLECULAR SIEVE PELLETS

| Test<br>No. | Initial Loading,<br>percent | Description<br>Temperature, °C | Descrption<br>Time    | Final Loading,<br>percent | End of Desorption,<br>Bed Face<br>Pressure, µ |
|-------------|-----------------------------|--------------------------------|-----------------------|---------------------------|-----------------------------------------------|
| 1           | 5                           | 200                            | Unsuccessful d        | ue to leakage             |                                               |
| 2a          | 8.2                         | 150                            | 5 mln                 | 5.3                       | 44                                            |
| ь           | 5.3                         | 150                            | 10 min                | 4.3                       | 32                                            |
| с           | 4.3                         | 150                            | 15 mln                | 3.5                       | 25                                            |
| 3a          | 10.0                        | 100                            | 5 min                 | 8.5                       | 33                                            |
| ь           | 8.5                         | 100                            | 10 mln                | 7.0                       | 26                                            |
| с           | 7.0                         | 100                            | 30 mln                | 5.2                       | 17                                            |
| 4           | 9.9                         | 100                            | 30 mln                | 6.4                       | Vacuum throttled<br>to 215                    |
| 5a          | 6.4                         | 100                            | 17 hr                 | 4.15                      | 16                                            |
| ь           | 4.15                        | 100                            | 19 hr                 | 3.3                       | 16                                            |
| 6a          | 5.0                         | 200                            | 30 mln                | 2.0                       | 23                                            |
| ь           | 2.0                         | 200                            | 4.75 hr               | 1.1                       | 16                                            |
| c           | 1.1                         | 200                            | 16.5 hr               | 1.0                       | 14                                            |
| 7a          | 5.2                         | 100                            | 30 mln                | 4.5                       | 18                                            |
| Ь           | 4.5                         | 100                            | 64.4 hr               | 3.0                       | 18                                            |
| 8           | 5.2                         | 100                            | 30 min N₂             |                           | Dry GN <sub>2</sub> purge at                  |
| °           | 3.2                         | 100                            | 5 mln vac             | 3.5                       | 5 psla                                        |
|             |                             | • 1                            | 25 min vac            | 3.6                       |                                               |
| 9           | 10.1                        | 100                            | 30 min N <sub>2</sub> |                           | Dry GN <sub>2</sub> purge at                  |
| 1           | 10.1                        | 100                            | 5 min vac             | 7.75                      | 5 psia                                        |
|             |                             |                                | 25 min vac            | 5.4                       |                                               |
| 10          | 4 1                         | 100                            | l hr N₂               |                           | Dry GN <sub>2</sub> purge at                  |
| 10          | 6.1                         | 100                            | 5 min vac             | 5.3                       | 5 psla                                        |
|             |                             |                                |                       | · ·                       |                                               |
| 11          | 5.0                         | 200                            | 2 mln                 | 3.2                       | 65                                            |
|             | .3.2                        | 200                            | 8 mIn                 | 2.15                      | 37                                            |
|             | 2.15                        | 200                            | 90 min                | 1.35                      | 17                                            |
| j           | 1.35                        | 200<br>200                     | 18.2 hr<br>3 hr       | 1.4<br>X                  | 19                                            |
| ļ           | 1.4<br>X                    | 200                            | 3 nr<br>16.6 hr       | 0.4*                      | 10                                            |
|             | ^                           | ,200                           | 10.0 111              | 1.1**                     | ,,,                                           |
| 12          | 5.0                         | 200                            | 30 mIn N <sub>2</sub> |                           | Dry GN₂ purge at<br>5 psla                    |
| '           |                             |                                | 5 min vac             | 2.2                       | o psia                                        |

<sup>\*1.9</sup> hr at equilibrium
\*\*
24.1 hr at equilibrium



Vacuum Desorption of H<sub>2</sub>O Vapor from Linde Type 5A Molecular Sieve

long in many instances; for this reason mechanism (3); i.e., the "sticking" phenomenon, is presently considered the controlling step and accounts for the lower dynamic adsorption capacity. Further, more quantitative bases for this conclusion are arrived at in Section 7, where the data are evaluated by means of detailed analysis.

#### REFERENCES

- Molecular Sieves for Selective Adsorption, Non-Hydrocarbon Materials Data Sheets, Linde Co., New York, New York, Linde Form 9691-E, February 1959.
- 5-2. Willard, T. L., Research and Development on Closed Respiratory
  System Accessories, Molecular Sieves for Carbon Dioxide Adsorption,
  Report No. ASD-TR-527, Wright-Patterson Air Force Base, Ohio,
  October 1961.
- 5-3. <u>Davison Granular Silica Gels</u>, Davison Chemical Division, Baltimore, Maryland, Davison Technical Bulletin No. 303, p8.
- 5-4. Dehydration of Air and Gas with Davison Silica Gel, Davison Chemical Division, Baltimore, Maryland, Davison Technical Bulletin 202, January 1965, p2.
- 5-5. Chemical Engineers' Handbook, edited by John H. Perry, 3rd Edition, McGraw-Hill, New York, 1950, pgs769-770.
- 5-6. Ledoux, E., <u>Vapor Adsorption</u>, Chemical Publishing Co., New York, 1945, pgs109-128.
- 5-7. Hougen, O. A., Watson, K. M. and R. A. Ragatz, Chemical Process Principles, Part I, 2nd Ed. John Wiley and Sons, New York, 1958, pgs382-3.
- Tsuji, J. and S. Steinberg, Test Proposal, Study on the Properties of Solid Adsorbents for the Design of Regenerable Carbon Dioxide Removal Systems, AiResearch Manufacturing Co., Div. of The Garrett Corporation, Los Angeles, Calif. Report SS-3406, July 5, 1965, p2-20.
- 5-9. Treybal, R. E., <u>Mass Transfer Operations</u>, McGraw-Hill Book Co., New York, 1955, p497-511.
- 5-10. Breck, D. W., "Crystalline Molecular Sieves," <u>J. Chem. Education</u>, <u>48</u>, 678 (December 1964).
- 5-11. Hougen, O.A., and W. R. Marshall, Jr., "Adsorption from a Fluid Stream Flowing Through a Stationary Granular Bed," Chem. Eng. Progress, 43, (1947), p 197.
- 5-12. Kel'tsev, N. V., "Kinetics of Desorption of Water Vapor and Carbon Dioxide from Zeolites under Vacuum," Gazovaya Promyshlennost' (Gas Industry), No. 4, 1964, pgs 51-54.



#### SECTION 6

### PROTOTYPE EXPERIMENTAL TEST PROGRAM

## INTRODUCTION

To provide information on the performance of full-scale silica gel and molecular sieve beds a series of tests was conducted on a 6 in. by 6 in. by 6 in. aluminum plate fin heat exchanger packed with varying amounts of silica gel and molecular sieve. A photograph of the experimental system appears in Figure 6-1. The test bed and valve assembly appears in Figure 6-2, and a photograph of the sorbent bed and heat exchanger core is shown in Figure 6-3.

WATER VAPOR ON SILICA GEL

### Purpose

Expermients were performed to investigate the influence of desorption pressure and temperature upon the adsorption performance of the silica gel bed. Preliminary analysis had indicated that a 2-in. bed depth would be sufficient to reduce the water vapor concentration from a dew point of  $52^{\circ}F$  (10 mm Hg partial pressure) to a dew point of  $-54^{\circ}F$  (0.04 mm Hg partial pressure) for mass velocity of 0.30 lb/ft²-min at a total pressure of 5 psia; these results were anticipated for a 30-min adsorption cycle when the previous 30-min desorption cycle was performed at a nominal  $100^{\circ}F$  bed temperature, and a pressure of 200 mm Hg at the face (directly exposed to the vacuum manifold) of the desorbing bed. This test series was conducted to confirm this analysis and to determine the importance of such variables as desorption coolant temperature and desorption pressure.

### Technique

The heat exchanger was packed with a 2-in. layer (1.75 lb) of Grade 05, 6-16 mesh Davidson silica gel. The balance of the depth of the heat exchanger was filled with 5 lb of 3-4 mm pyrex glass beads. The bed was then installed in the test setup as shown in Figure 6-4, with the silica gel section adjacent to the gas valve.

Flow was induced through the bed by operation of the gas vacuum pump. Nitrogen gas flow was established at the desired flow rate by regulating the  $N_2$  injection valve and observing flow meter readings. Pressure in the bed was then adjusted by regulating the throttling valve in the line to the gas vacuum pump. Inlet dew point was adjusted by varying the temperature of the coolant flow to the heat exchanger downstream of the water bubbling chamber. During adsorption, the gas valve upstream of the bed was positioned for flow through the bed, and the bed heat exchanger valve was positioned to feed cool glycol through the heat exchanger core. When desorption was desired, the gas valves and coolant valves were switched simultaneously; the bed vapors were directed to the liquid nitrogen cold trap and vacuum pumping system, and warm coolant was permitted to enter the test bed heat exchanger core. For some



Figure 6-1. Prototype Test System



Figure 6-2. Prototype Sorbent Test Bed and Valve Assembly





Figure 6-3. Prototype Sorbent Bed and Heat Exchanger Core



Figure 6-4. Prototype Silica Gel Test System Configuration Schematic

runs the desorption pressure was adjusted by bleeding dry nitrogen into the vacuum pumping system to essentially decrease its pumping rate from the bed, thus increasing the desorption bed face pressure.

During each run, temperatures were recorded by a Brown Multipoint Recorder; pressures and inlet and outlet dew points were measured and recorded manually.

## Test Results

Table 6-1 summarizes the tests conducted. Figure 6-5 shows results obtained during Run No. 2-2, which is typical for all runs. The outlet dew point as reasured was compared to that computed, using the technique described in the next section. For purposes of simplicity, the bed was assumed to be isothermal during adsorption and also during desorption. The temperatures were determined primarily by the coolant temperatures. Figures 6-6, 6-7, and 6-8 show the comparison. The adsorption mass transfer coefficient used was 0.7 by 10<sup>-3</sup> in all cases. It had, however, very little effect since the predicted outlet dew point depended almost exclusively on the water loading at the end of desorption. This loading is a function of bed temperature and water partial pressure during desorption. The consistently better performance of the bed over that calculated, then, must be due to better desorption than is indicated. Inspection of the bed pressures during desorption shows an unusually high drop between the face and back for the flow of water vapor occurring (Figure 6-9). This suggests a higher gas flow rate, which could only be caused by a leak at the back of the bed. The gas leaking in would be essentially dry and would act as an effective purge, thus improving the adsorption performance.

A better method for determining the adsorption mass-transfer coefficient is the use of the breakthrough performance. Figure 6-10 shows the effect of the adsorption mass-transfer coefficient on the predicted outlet dew point. The initial load was assumed to be nearly zero, since the breakthrough was performed immediately following a bakeout.

The coefficient will be a strong function of how the bed is packed around the heat exchanger core. A tight pack will eliminate channeling, provide high interstitial velocities, and yield a high mass-transfer coefficient. This is the case of the 2-in. prototype bed, where a rather high value of 1.0 by 10<sup>-3</sup> along with a high contact area, ASG, of 935, was best. This area was estimated by ratio from the packed densities of this bed and the 5/8-in. bed, where an ASG of 700 was used.

## Discussion of Test Results

Outlet dew point data obtained confirmed initial predictions of full-scale bed performance to a considerable degree. As mentioned earlier, the most important variable in obtaining high-efficiency predryer sections for a regenerative  $\mathrm{CO}_2$  removal unit is desorption temperature and pressure. The water vapor outlet partial pressures recorded during adsorption as shown are almost constant for the entire adsorption run, indicating that the adsorption mass transfer zone is within the 2-in. depth for the entire run. Thus, the outlet

## TABLE 6-1

## SILICA GEL PERFORMANCE

Tests of a 2-in.-deep 6-16 mesh (1.75 lb) silica gel bed in a 6-in. by 5.8-in. face heat exchanger.

Carrier gas

Nitrogen at 5 psia

Gas flow

3.5 lb/hr (0.302 lb/ft<sup>2</sup>-min)

Adsorbent coolant temperature

58°F

Coolant flow

200 lb/hr

Inlet dew point

52°F, 10 mm Hg

Half cycle time

30 min

|                |             | Desorb          | Outlet<br>Vapor Conc |                    | Bed Face<br>Pressure At |                                               |
|----------------|-------------|-----------------|----------------------|--------------------|-------------------------|-----------------------------------------------|
|                | Total       | Coolant         | _                    | Partial            | End Of                  |                                               |
| Test<br>Series | Time,<br>Kr | Temp,<br>°F     | Dew Point,<br>OF     | Pressure,<br>MM Hg | Desorption,<br>µ        | Remarks                                       |
| . 2-1          | 5-1/2       | 115             | -70 to -75           | 0.012              | 40                      |                                               |
|                |             | to<br>120       |                      |                    |                         |                                               |
| 2-2            | 12          | 97<br>to<br>100 | -75 to -80           | 0.0072             | 40                      | Outlet dew<br>point<br>appears low            |
| 3-1            | 6-1/2       | 80              | -40 to -50           | 0.07               | 40                      |                                               |
| 3-2            | 6           | 80              | -30 to -35           | 0.15               | 500                     |                                               |
| 2-3            | 7-1/2       | 100 .           | -55 to -60           | 0.03               | 175                     | V                                             |
| 2-4            | 2-1/2       | 100             | -50 to -55           | 0.042              | 500                     |                                               |
| 4-1            | 6           | 70<br>ads       | -30 to -35           | 0.15               | 40                      | 70 <sup>0</sup> F Adsor-<br>bent cool-<br>ant |
| 5-1            | 8-1/2       | 100             | -50 to -55           | 0.042              | 200                     | Gas flow<br>increased<br>to 3.75 lb/hr        |

# TABLE 6-1 (continued)

| Test   | Total | Desorb<br>Coolant<br>Temp, | Outlet<br>Vapor Conc<br>Dew Point, |       | Bed Face<br>Pressure At<br>End Of<br>Desorption, |                                                    |
|--------|-------|----------------------------|------------------------------------|-------|--------------------------------------------------|----------------------------------------------------|
| Series | Hr    | °F                         | °F                                 | MM Hg | ļμ                                               | Remarks                                            |
| 5-2    | 10    | 100                        | -40 to -45                         | 0.08  | 200                                              | Desorb<br>coolant flow<br>decreased<br>to 31 lb/hr |
| 6-1*   | 3.0   | None                       | -                                  |       | -                                                | Run to<br>breakthrough                             |

<sup>\*</sup>Run on modified bed: 2-7/16-in. deep (1.0 lb) silica gel in 4.3 in.by 4.8 in. face area. Gas flow 5.5 lb/hr.





Figure 6-6. 3-in. Silica Gel Tests





Figure 6-7. I-in. Silica Gel Tests



Figure 6-8. 2-in. Silica Gel Tests



Desorption Pressure Comparison Showing Apparent Leak Figure 6-9.



Figure 6-10. Water Breakthrough on 3-in. Silica Gel Bed

partial pressure is influenced almost exclusively by the residual loading of the bed from the previous desorption. This will be characteristic of all predryer designs, since the important factor in these units is absolute maximum water removal to protect the molecular sieve bed downstream.

CO2 AND WATER VAPOR ON MOLECULAR SIEVE

### Purpose

This test series was initiated to provide confirmation of predicted CO<sub>2</sub> removal efficiency of molecular sieves, by investigating the effect of bed size, bed temperature, and coadsorbed water during adiabatic and thermal swing operation.

## Technique

The heat exchanger was packed with varying depths of I/I6-in. pellet, Linde Type 5A molecular sieves. The balance of the heat exchanger was filled with glass beads. The bed was then installed in the test setup as shown in Figure 6-II with the molecular sieve section adjacent to the gas valve.

Operation and procedures were the same as during the silica gel tests, except that pure  ${\rm CO}_2$  was injected in the nitrogen carrier gas upstream of the bed, and the inlet and outlet  ${\rm CO}_2$  concentration was monitored by an infrared  ${\rm CO}_2$  analyzer. H<sub>2</sub>O injection was restricted to low levels typical of that anticipated from the silica gel predryer (below -50°F dew point). Injection of this very small amount of water vapor was accomplished by bleeding into the circuit small amounts of laboratory ambient air.

### Test Results

# Test Series 6 and 7 (1-in.-deep test bed)

A total of 219 hr of cyclic operation was conducted on the test unit packed with a 1-in. depth (0.5 lb) of 1/16-in.-dia pellet, Linde Type 5A molecular sieve. The series of tests conducted, outlined in Table 6-2, provided information on thermal swing and adiabatic operation of the bed, at conditions simulating anticipated final design conditions. In addition, an accelerated water poisoning test was conducted, with periodic measurement of CO<sub>2</sub> removal performance as water buildup accumulated. The initial portions of this test were repeated twice following extended bakeout periods to confirm findings. Figures 6-12 and 6-13 show representative CO<sub>2</sub> breakthrough curves for the various runs, in all cases after sufficient cycles had been run to establish stability. The differences in performance between runs is attributed to differences in residual water loading, with best performance occurring during runs 6-8 and 7-3, after a 30-hr bakeout. Water loading at this point is estimated to be less than I percent, with other runs shown indicating residual water up to 2 percent.



Prototype Molecular Sieve Test System Configuration Schematic Figure 6-11.

TABLE 6-2

SUMMARY OF TESTS ON 1-IN.-DEEP MOLECULAR SIEVE BED

| Test<br>No. | No.<br>Cycles/<br>Adsorb. Hr | Half Cycle<br>Time, Min | Gas Flow<br>Rate, 1b/hr | Coolant Temp<br>Adsorb/Desorb, <sup>0</sup> F                | Desorb<br>Pressure, μ      | Inlet<br>Dewpoint, <sup>0</sup> F | Outlet pCO <sub>2</sub><br>End of<br>Cycle, MM Hg | Remarks                                                    |
|-------------|------------------------------|-------------------------|-------------------------|--------------------------------------------------------------|----------------------------|-----------------------------------|---------------------------------------------------|------------------------------------------------------------|
| Init        | Initial Bakeout              |                         |                         | Hours at 400°F with < 10µ Vacuum                             | 10 Vacuum                  |                                   |                                                   | Leakage suspected                                          |
|             | 13/6.5                       | 30                      | 3.7                     | 58/85                                                        | . 550                      | -50                               | 6.2 to 6.95                                       | Poor CO <sub>2</sub> removal, poor bake-<br>out suspected  |
| 6-2         | 2/1                          | 30                      | 3.7                     | 58/85                                                        | 550                        | -50                               | 1                                                 | IR calibration in error,<br>data discarded                 |
| Bakeout     | —<br>out                     | ·.                      | H 01                    | 1 Hours at 240°F, 8 Hours dry GN <sub>2</sub> Purge at 240°F | s dry GN <sub>2</sub> Purg | e at 240°F                        |                                                   |                                                            |
| 6-3         | 4/2                          | 30                      | 3.8                     | 58/95                                                        | 150                        | -80                               | 6.45                                              | Initial check with dry gas                                 |
| 9-9         | 54/101*                      | 30                      | 3.8/7.7**               | 58/95                                                        | 550                        | -50                               | See Fig.                                          | First H <sub>2</sub> O poisoning check                     |
| Bakeout     | l<br>out                     |                         | -                       | 30 Hou                                                       | 30 Hours at 185°F          |                                   |                                                   |                                                            |
| 6-5         | 5/2.5                        | 30                      | ю<br>8                  | 58/95                                                        | 700                        | 08-                               | 9.9                                               | Run with dry gas, poor bake-<br>out due to low temperature |
| Bakeout     | out                          |                         |                         | .12 Hou                                                      | <br> 2 Hours at 400°F      |                                   |                                                   |                                                            |
| 9-9         | 23/11.5                      | 30                      | 3.8                     | 58/95                                                        | 550                        | -50                               | 5.7 to 6.6                                        | Repeat of H <sub>2</sub> O poisoning check                 |
| 6-7         | 3/1.5                        | 30                      | 3.8                     | 58/95                                                        | 550                        | -50                               | 5.7 to 6.6                                        |                                                            |
| 7-1         | 14/3.5                       | 5                       | 4.0                     | None                                                         | 550                        | -65                               | 5.9 to 6.1                                        | Adiabatic operation                                        |
| 7-2         | 4/2                          | 30                      | 4.0                     | None                                                         | . 250                      | - 65                              | 6.7                                               | Adiabatic operation                                        |
| Bakeout     | out                          |                         |                         | 30 Hou                                                       | 30 Hours at 400°F          |                                   |                                                   |                                                            |
| 8-9         | 28/14                        | 30                      | 3.8                     | 58/95                                                        | 550                        | -50                               | 5.5 to 6.7                                        | Third H <sub>2</sub> 0 poisoning check                     |
| 7-3         | 10/2.5                       | 5                       | 7.0                     | None                                                         | 550                        | -65                               | 5.75                                              |                                                            |

\*Excess adsorb time shown is due to noncyclic adsorption of H<sub>2</sub>O only to accelerate water loading. \*\*Gas flow is increased to accelerate water loading.



Figure 6-12. Thermal Swing CO<sub>2</sub> Removal of a 1-in. Bed



Figure 6-13. Adiabatic CO<sub>2</sub> Removal of a I-in. Bed



# Test Series 8 (2-in.-deep test bed)

Following the I-in. bed tests, a short series of runs was conducted to determine the CO<sub>2</sub> removal performance with a 2-in. (1.7-lb) bed. Table 6-3 summarizes the tests conducted, and Figure 6-14 shows typical CO<sub>2</sub> breakthrough curves.

# Test Series 9, 10, and 11 (3-in.-deep test bed)

Following the 2-in. bed tests, the test heat exchanger was loaded with about 2 lb of molecular sieve to a 3-in. depth. Test series 9 was conducted. During these tests considerable difficulty was experienced in attaining a leaktight system during desorption. The test setup was revised as shown in Figure 6-15, eliminating the extensive adsorption ducting. Following this revision to the test setup, a series of tests was conducted, particularly to provide further data on water poisoning. Run II-I was a continuous H<sub>2</sub>O injection with periodic CO<sub>2</sub> adsorption performance measurement; in addition, three CO<sub>2</sub> adsorption breakthrough curves to equilibrium were obtained at various inlet partial pressures, shown in Figure 6-I6. Table 6-4 summarizes this test series, and Figure 6-I7 shows typical results on a fresh bed.

### Calculations and Water Poisoning

In order to find the best constants for predicting bed performance and also to examine methods for estimating the effect of water poisoning, computer comparisons were made with the data from the tests.

### 1. One-In. Bed

### a. Dry Bed Performance

Although the mass of molecular sieve loaded into the bed was measured, it contained an unknown amount of adsorbed material, mostly water. For use in calculations, the dry mass or mass available for  $\rm CO_2$  must be known. The best way to obtain this is from the amount of  $\rm CO_2$  actually adsorbed under known pressure and temperature conditions. Comparison of this result, calculated from the known flow rate and inlet and effluent  $\rm CO_2$  pressure, with the equilibrium loading at those conditions yields the bed weight. Run 6-3 to breakthrough was used. A bed weight of 0.375 lb was calculated. The fourth adsorb cycle is compared to the steady-state computed results in Figure 6-18. A masstransfer doefficient for adsorption of 0.9 by  $\rm 10^{-4}$  was used along with 5.0 by  $\rm 10^{-4}$  for desorption. The desorption coefficient is the same formed for all testing, on the 5/8-in.-dia bed as well as the large prototype bed. However, the coefficient for adsorption is much smaller than that formed for the 5/8-in. bed. As will be discussed in Section 7, the effect of channeling is considered most responsible for the decreased coefficient in a highly finned bed.

## b. Water Poisoning

An accurate description of CO<sub>2</sub> performance on a bed exposed to some water vapor would require knowledge of coadsorption equilibrium as well as rate data.



TABLE 6-3

SUMMARY OF TESTS ON 2-IN.-DEEP MOLECULAR SIEVE BED

|               | 30 3.8           |
|---------------|------------------|
| 58/95<br>Mone | 8 (0             |
| ~ ~           | gada samen sa sa |

\*Noncyclic H<sub>2</sub>O adsorption included



Figure 6-14. CO<sub>2</sub> Adsorption Performance of a 2-in. Bed



Figure 6-15. Modified Molecular Sieve Test System Configuration



Figure 6-16. CO, Brankthrough in a 3-in.-Deep Bed

TABLE 6-4

SUMMARY OF TESTS ON 3-IN. - DEEP MOLECULAR SIEVE BED

|             | Remarks                            | -              | -       | To the state of th | -      |      | •                      |          |          | Second adsorb cycle run<br>until complete bed break-<br>through | H <sub>2</sub> O breakthrough run |                          |           | •          | u o inimation and pariodic | CO <sub>2</sub> removal performance | -                  | Breakthrough run - 1mm<br>pCO2 inlet | Breakthrough run - 2mm<br>pCO <sub>2</sub> inlet |             |
|-------------|------------------------------------|----------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------|------------------------|----------|----------|-----------------------------------------------------------------|-----------------------------------|--------------------------|-----------|------------|----------------------------|-------------------------------------|--------------------|--------------------------------------|--------------------------------------------------|-------------|
| Outlet pCO. | End of<br>Cycle, MM Hg             | ,              |         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.0    | 3.5  |                        | 80       |          | See Figures<br>6-14 and<br>6-15                                 |                                   |                          | 2.2       | 175 to 1.9 |                            | See Figure<br>6-18                  |                    | See Figure<br>6-14                   | See Figure<br>6-14                               |             |
|             | Inlet<br>Dewpoint, <sup>0</sup> F  |                |         | -50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -65    | -65  | at 400°F               | 09-      |          | - 50                                                            | +20                               |                          | -65       |            | 06.                        | +50                                 |                    | <-75                                 | <-75                                             |             |
|             | Desorb<br>Pressure, µ              | 20 hr at 400°F |         | 450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 200    | 007  | Bakeout 35 hr at 400°F | 450      | at 400°F | 200                                                             | 1                                 | hr at 400 <sup>0</sup> F | 200       |            | 200                        | 200                                 | <br> 4 hr at 400°F | <u>o</u>                             | 0                                                |             |
|             | Coolant Temp,<br>Adsorb/Desorb, °F | 20 hr          |         | 58/95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | None   | None | Revised Test Setup,    | 58/95    | 13 hr    | 58/95                                                           | 28/                               | 32                       | 9         | NOIS.      | 58/95                      | 58/95                               | 4 4 4              | 58/110                               | 58/100                                           |             |
|             | Gas Flow<br>Rate, 1b/hr            |                |         | 3.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.4    | 4.0  |                        | 3.8      |          | 3.8                                                             | 3.9                               |                          | ,         | 0.4        | 3.8                        | 3.8                                 |                    | 8.8                                  | ъ.<br>8                                          |             |
|             | Half Cycle                         | ,              |         | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5      | 30   |                        | 30       |          | 30                                                              | 1                                 |                          |           | 5          | 8                          | 30                                  | -                  | !                                    | 1                                                | - Courter W |
|             | No.<br>Cycles/                     | Washing        | Bakeout | 10/5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10/2.5 | 2/1  | i                      | 9/4.5    |          | Bakeout<br>2 2/6.5                                              | , , , ,                           |                          | a none de | 7/1.5      | 10/5                       | 71/17                               |                    | Bakeout                              |                                                  |             |
|             | Test                               | Š              | Bak     | -6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9-2    | , F. | )                      | <u>-</u> |          | 10-2                                                            |                                   | - 6                      | 0         | 10-3       | 10-4                       | 11-2                                | <u> </u>           | Ba                                   |                                                  | 1           |





Figure 6-17. CO2 Adsorption Performance of a 3-in.-Deep Bed



Computed and Experimental Results for CO<sub>2</sub> on Dry I-in. 5A Bed Figure 6-18.



Figure 6-19. Prediction Model for Water Poisoning Effect on Molecular Sleve Bed



Comparison of 1-in. 5A Bed Results with Poisoning Prediction Figure 6-20.



Figure 6-21. Computed and Experimental Results for CO<sub>2</sub> Breakthrough on Dry 3-in. Bed



Calculated and Experimental 3-in. 5A Bed  ${\rm CO}_2$  Results with Intermittent Metered Water Poisoning Figure 6-22.

## 3. Water Breakthrough on Molecular Sieve

In order to check the idea of a flat  $H_2O$  adsorption profile and also to check the equilibrium data, the breakthrough Run II-I on the 3-in.-deep bed was compared with computed results for the same run. The Linde equilibrium data was fit for this purpose with the analytical representation:

$$log_{10}P = \frac{2.85lnT - 16.4 - ln(log_{10}W - 1.255)}{2.29 - 0.0113T + 1.54 \times 10^{-5}T^2}$$

 $200^{\circ} F \ge T \ge 20^{\circ} F$ 

where P = pressure, mm Hg

W = loading, lb/lb

 $T = temperature, {}^{0}F$ 

The best match is shown in Figure 6-23. The sharp breakthrough was confirmed, but either the mass of sorbent calculated earlier or the equilibrium data would seem to be slightly in error. A mass-transfer coefficient of  $3.0 \times 10^{-4}$  yielded a slope similar to that of the experimental data.

#### Discussion of Test Results

## 1. CO2 on Molecular Sieve

Two fundamental characteristics of the molecular sieve were confirmed during this test series. First, basic adsorption data were obtained and compared to analytical predictions based on small bed tests. These comparisons, as outlined in Section 7, were generally quite close, and confirmation of constants to be used in performance prediction was thus obtained. Second, and of equal importance, the influence of residual or coadsorbed water on CO<sub>2</sub> removal performance was obtained.

#### 2. <u>Influence of Water on the Molecular Sieve</u>

As shown in Figures 6-20 and 6-22, a marked reduction in  $\rm CO_2$  removal capability occurs as the molecular sieve picks up water. Absolute accuracy of the  $\rm H_2O$  loading data for these test runs is open to some doubt since initial loading could only be estimated from bakeout conditions, and some difficulties were experienced in maintaining the system leak-tight throughout the runs. However, the indication of rapid decay of  $\rm CO_2$  removal capability is obvious and confirms data obtained in the small-bed test program. To provide further data on water poisoning, test series II-I and II-2 were conducted on the 3-in. deep bed. To accelerate water loading, a high inlet partial pressure was used, 2.6 mm  $\rm Hg$  (+20°F dew point). To check accuracy of water loading measurement, Run II-I (Figure 6-23) was carried to complete breakthrough without interruption. A total of 0.32 lb of  $\rm H_2O$  was adsorbed in the bed during this run giving a 16.4 percent delta loading. With the assumed I percent initial loading, this gives a total loading at complete breakthrough of 17.4



Figure 6-23. Water Breakthrough on 3-in. Molecular Sieve Bed

percent, which agrees reasonably well with Linde equilibrium data of 18 to 18.5 percent. Run II-2 (Figure 6-16) was interrupted at arbitrary times, and  $\rm CO_2$  removal performance measured. Total water buildup in the molecular sieve during the run was 0.33 lb of  $\rm H_2O$  or 17 percent delta loading. Again this agrees favorably with a residual loading of approximately I percent giving a total load at complete breakthrough of 18 percent. Figure 6-22 shows  $\rm CO_2$  removal performance measured during the water injection run. These runs indicate a slow degradation of  $\rm CO_2$  removal performance as water buildup occurs in the molecular sieve.

#### 3. Predicting the Influence of Water on Molecular Sieve

As mentioned previously, a method of predicting this slow degration of the CO<sub>2</sub> adsorption capability of molecular sieve might require an exhaustive analysis of the coadsorption phenomena. The difficulty in obtaining fundamental rate data of two or three gas mixtures, as well as the complex mathematical model required for computer prediction of coadsorption, precluded the use of this approach. Rather, an attempt has been made to correlate the data obtained in the tests outlined in this section and Section 5, and establish an approximate analysis method with reasonable accuracy. With this model it is possible to predict CO<sub>2</sub> removal performance using the analytical model developed for single gas adsorption. The active zone is always considered the minimum bed depth for CO<sub>2</sub> removal; and an additional depth of bed is provided to adsorb the small but significant amount of H<sub>2</sub>O which is discharged from the silica gel predryer. It is assumed that very little of this water is desorbed from the molecular sieve during normal cyclic operation since data presented in Section 5 show that the relatively low temperature and short duration of cyclic desorption (not over 100°F, or 30 min) will desorb very little H20. Thus, preduction of poisoning rate is accomplished by decreasing bed depth at a rate equal to water injection rate divided by bed loading capability for H<sub>2</sub>O. CO<sub>2</sub> removal performance is estimated by considering this bed depth as not being available for CO2 adsorption. Plotted in Figures 6-20 and 6-22 are results of such a prediction, showing the expected CO2 removal performance as the bed is poisoned by the increasing amounts of water added.

#### SECTION 7

#### DIGITAL COMPUTER PREDICTION DEVELOPMENT

#### INTRODUCTION

The present computer program package for the Univac 1107 computer, \$9950 through \$9999, was developed to predict the transient performance of a composite molecular sieve, silica gel bed for  $\rm CO_2$  removal, which may be operated either under adiabatic or thermal swing conditions. A schematic drawing of such a  $\rm CO_2$  removal system is shown in Figure 7-1.

An attempt was made to solve the actual physical problem as rigorously and as generally as was feasible. Thus, transient pressure variations during a desorption cycle are not arbitrarily set, but are calculated from the AiResearch test data for the flow of nitrogen gas under low pressures through a 5/8-in.-ID molecular sieve bed. These data are shown in this section. To make the program flexible, most of the physical properties and transfer rate constants are allowed to vary as a function of the bed location. Such a flexibility allows for the use of different heat exchanger configurations and different modes of operation for the molecular sieve bed and the silica gel bed.

The mass-transfer equations are written to permit both intraparticle diffusion and surface resistance. Either process can be made to control by proper choice of the appropriate coefficients in the input. A major goal for the computer program was the determination from the data of the proper values of the mass transfer coefficients for adsorption and desorption, for water and  $\rm CO_2$ , in both silica gel and molecular sieve 5A. When all experimental data can be fit with reasonable accuracy, operation of proposed designs can be simulated with an equal degree of confidence.

To minimize the running time of the program, an implicit scheme as proposed by Hwang (Reference 7-I) was employed for transient mass transfer calculation, and a method somewhat similar to the one proposed by DuFort and Frankel (Reference 7-2) for solving a diffusion equation was used to handle the coupling terms of the energy equations for the transient temperature changes of the metal parts, the sorbent, and the coolant. The program, therefore, permits the use of as large time increments as are allowable for accuracy considerations.

Program \$9960 does adsorption and desorption calculations for a specified number of complete cycles. Programs \$9950 and \$9951 perform adsorption and desorption calculations respectively for just one-half cycle. With all physical properties and operation parameters inputted through two block data subprograms, the programs will compute and print out temperature and bed loading changes as a function of time. Average bed loadings and average rates of adsorption and desorption are also printed.

The differential equations which describe the adsorption problem, and a brief description of how the equations are solved by the program, will be given later. Determination of the various transfer coefficients to be used in final bed design will be described also. Example input and output and a complete listing of the Fortran source program will follow.





A Composite Molecular Sieve, Silica Gel Bed for CO2 Removal Figure 7-1.

#### MATHEMATICAL MODEL

#### General Assumptions Made

In addition to some minor approximations which will be mentioned with the derivation of equations, the following general assumptions were made in deriving the differential equations which were employed in the present programs.

- Assumption A--Temperature gradient in the pellet interior is negligible.
- Assumption B--Adsorption occurs by the diffusion of an adsorbate through the stagnant surface film at the exterior surface of an adsorbent particle, condensing at the surface and then diffusion into the interior of the particle. Desorption occurs in a reverse fashion. This assumption should be completely valid for the adsorption of CO<sub>2</sub> on a molecular sieve bed, as the size of the CO<sub>2</sub> molecules and that of the micropores of the adsorbent are roughly the same--
- Assumption C--Adsorbent pellets can be represented by spherical particles for mass transfer calculations.
- <u>Assumption D--Heats of adsorption and desorption do not depend on temperature or concentration.</u>
- Assumption E--In the adsorption half-cycle, the total flow rate and density of the gas stream are constant.
- Assumption F--No variations exist in the direction perpendicular to the direction of the gas flow.

The test of all the above assumptions is whether the program can indeed describe the test data without the need for indiscriminant variations in the coefficients.

#### Differential Equations Describing Transient Behavior of an Adsorption Bed System

In the following, only those equations which are not obvious will be given their derivations. The equations which are assumed to be obvious or easily derived by the reader are listed with appropriate boundary conditions without proof. Initial conditions of the equations are omitted, as their existence should be apparent.

# 1. <u>Diffusion Equation for Interior of Sorbent Pellet in Finite Difference</u> Form

Dividing the pellet into elements with equal volume except the center and the surface nodes, which are half nodes, a material balance similar to Equation (4-16) gives

$$(\Delta V) \rho_{S} \frac{dW_{K}}{dt} = \left(4\pi r_{M-\frac{1}{2}}^{2}\right) \frac{\rho_{S} D_{K}}{r_{M}-r_{M-1}} \left(W_{M-1}-W_{M}\right)$$

$$-\left(4\pi r_{M+\frac{1}{2}}^{2}\right) \frac{\rho_{S} D_{K}}{r_{M+1}-r_{M}} \left(W_{M}-W_{M+1}\right) \qquad * \qquad (7-1)$$

At the outside surface of the pellet, Equation (4-15) becomes for the transient situation

$$\frac{\Delta V}{2} \rho_{s} \frac{dW_{k}}{dt} = \left(4\pi r_{s-\frac{1}{2}}^{2}\right) \frac{\rho_{s} D_{k}}{r_{s} - r_{s-1}} \qquad \left(W_{s-1} - W_{s}\right)$$

$$-(4\pi r_s^2) M_{Wk} K_g (P_{k_s} - P \cdot X_k)$$
 (7-2)

where the mass-transfer condition of Equation (4-12) has been used.

At the center, Equation (4-24) is modified to allow surface migration in place of pore-diffusion:

$$\frac{(\Delta V)}{2} \rho_{s} \frac{dW_{k}}{dt} = -\left(4\pi r_{\frac{1}{2}}^{2}\right) \frac{\rho_{s} D_{k}}{r_{2}-0} \quad (W_{1} - W_{2})$$
 (7-2a)

# 2. Energy Equation for Gas Stream

As the thermal capacitance of the gas in the void space of the bed is negligible compared with those of the sorbent bed or the heat exchanger core, a quasi-steady-state assumption can be made and there is obtained, as energy equation for the gas stream,

<sup>\*</sup>Symbols are listed and systematically defined in the Nomenclature at the end of this section.

$$\frac{dT_g}{dx} = \frac{1}{f\rho_g c_{pg} \cdot u_g} a_{sg} \cdot h_{sg} (T_s - T_g) + a_{xg} \cdot h_{xg}.$$

$$(T_x - T_g)$$
(7-3)

For the adsorption half cycle,  $f.p_g.C_{pg}.u_g = (G_t.C_{pg})/A$ 

Equation (7-3) is subject to a boundary condition

$$T_{q} = T_{q} \quad \text{at } x = x$$

for the adsorption half cycle, while for the desorption half cycle, the condition to be satisfied is

$$T_g = T_s \quad \text{at } x = 0 \tag{7-5}$$

## 3. Energy Equation for Sorbent

$$\frac{\partial T_{s}}{\partial t} = \left(\frac{k_{s}}{C_{ps}\rho_{sb}}\right)^{\frac{2}{3}T_{s}} + \left(\frac{a_{sg}h_{sg}}{C_{ps}\rho_{sb}}\right) \left(T_{g} - T_{s}\right) + \left(\frac{a_{xs}h_{xs}}{C_{ps}\rho_{sb}}\right) \left(T_{x} - T_{s}\right)$$

$$+\left(\frac{a_{sg} K_g}{C_{ps} \rho_{sb}}\right) (P X_k - P_{ks}) \cdot (\Delta H_k)$$
 (7-6)

This equation is subject to the conditions.

$$\frac{\partial T_s}{\partial x} = 0$$
 at  $x = 0$ ,  $x = x_0$ ,

$$x = x_{MS \text{ max}}^{\text{and } x} = x_{SG \text{ min}}^{\text{constant}}$$
 (7-7)

# Energy Equation for Glycol Stream

$$\frac{\partial T_c}{\partial t} = -u_c \frac{\partial T_c}{\partial x} + \left(\frac{a_{vc} + c_{xc}}{c_{pc} \cdot \rho_c}\right) (T_x - T_c)$$
 (7-8)

The boundary condition for this equation is

$$T_c = T_{268}$$
 at  $x = x_{glycol}$  inlet (7-9)

# 5. Energy Equation for Metal Portion of Heat Exchanger

Boundary conditions for this equation are

$$\frac{\partial T_{x}}{\partial x} = 0 \qquad \text{at } x = 0 \text{ and} \qquad (7-11)$$

$$\text{at } x = x_{0}$$

## 6. Adsorption Material Balance Equation for k-th Component in Gas Stream

By assuming that quasi-steady-state conditions exist for the gas phase material balance, there is obtained from Equations (4-1) and (4-12) with the conditions of steady-state and no axial diffusion:

$$\frac{dP_k}{dx} = \left(\frac{P M_{wg}}{f \rho_g u_g}\right) a_{sg} \cdot K_g \cdot (P_{ks} - P_k)$$
 (7-12)

This has an inlet condition

$$P_k = P_k$$
, inlet at  $x = x_0$  (7-13)

## 7. Pressure Equation for Desorption

During the desorption cycle, both the bed pressure and gas flow rate vary with time and the axial location in the bed, and a method of calculating instantaneous pressures at various bed locations is desired. Although a quasi-steady-state assumption could be made regarding pressure calculations, the simplified problem so obtained would still be a boundary value problem which requires an iterative method of solution. An alternative approach would be to solve a transient equation describing pressure changes. The latter approach was taken in the present program, and the derivation of the pressure-equation employed in the program will be given below.

A material balance for a unit volume of bed gives

A f 
$$\left(\frac{\partial C}{\partial t}\right) = -\frac{\partial}{\partial x} \left(f C A u_g\right) + A M_{sg}$$
 (7-14)

where

$$\dot{M}_{sg} = a_{sg} \cdot K_g \cdot (P_{ks} - P \cdot X_k)$$
 (7-15)

and  $u_q$  is related to pressure gradient by Equation (4-6);

$$u_{g} = -\frac{1}{F} \left( \frac{\partial P}{\partial x} \right) \tag{7-16}$$

Also, by differentiating the perfect gas law

$$C = \frac{P}{RT_{q}}$$
 (7-17)

one obtains

$$\frac{\partial C}{\partial t} = \frac{I}{RT_g} \left( \frac{\partial P}{\partial t} \right) - \frac{P}{RT_g^2} \left( \frac{\partial T_g}{\partial t} \right)$$
 (7-18)

By combining with equations (7-16), (7-17) and (7-18), and dropping the term  $\frac{P}{RT_g^2}$  ( $\frac{\partial T}{\partial t}$ ), Equation (7-14) can be converted to Equation (4-9) in a quasi-isothermal condition:

$$\frac{\partial P}{\partial t} = \frac{P}{F} \left( \frac{\partial x^2}{\partial z^2} \right) + \frac{P}{F \cdot C \cdot A} \frac{\partial x}{\partial x} \left( \frac{A \cdot f \cdot C}{F} \right) \left( \frac{\partial P}{\partial x} \right) + \frac{P}{C \cdot f} \dot{M}_{sg}$$
 (7-19)

Equation (7-19) is used in the program for calculating pressure changes during the desorption half cycle.

The proportionality constant F in Equation (7-16) is a strong function of pressure, as the gas flow during desorption lies in the slip flow region. The pressure drop data for the flow of nitrogen gas through a 5/8-in.-ID molecular sieve bed were reduced by using the equation

$$\frac{F_{N_2} \cdot G \cdot R \cdot T_g}{M} = \frac{(P_1^2 - P_2^2)}{2 \cdot (x_2 - x_1)}$$
 (7-20)

to obtain  $F_{\rm N_2}$  at various mean pressures. The result is plotted in Figure 7-2, and a best straight line fit of the data gives

$$F_{N_2} = 2.494 \times 10^{-4} \times P^{0.795}$$
 (7-21)



Figure 7-2. Correlation of  $F_{N_2}$  vs  $(\frac{1}{P})$  From Test Data

Equation (7-21) is applicable only for nitrogen gas at  $70^{\circ}$ F, which has a viscosity of 0.0174 cp. In the desorption program, F is linearly corrected for the difference in viscosity as predicted by the Blake-Kozeny equation. Thus

$$F = \left(\frac{\text{Avg Viscosity}}{0.0174}\right) \times 2.494 \times 10^{-4} \times P^{0.795}$$
 (7-22)

It would seem reasonable to use a molal average viscosity for the gas mixtures in the Silica-Gel bed section; however, it was found that the use of the  $\rm CO_2$  viscosity for that of  $\rm H_2O$  vapor resulted in a better pressure predictions.

Equation (7-19) is subject to a boundary condition

$$\frac{\partial P}{\partial X} = 0 \qquad \text{at } X = 0 \tag{7-23}$$

At the bed exit, the pressure can be specified as a function of time, or else the vacuum duct resistance to gas flow will play a role in fixing the pressure and flow rate. The boundary condition will then be

$$f \cdot \rho_q \cdot u_q \cdot A = W_D(P) \tag{7-24}$$

Where  $W_D(P)$  can be approximated by the following expression which corresponds to the straight line shown in Figure 7-3 for a 3-in. duct.

$$W_{D}(P) = 11.2 P$$
 (7-25)

Combination of Equations (7-16), (7-24), and (7-25) gives

$$\frac{\partial P}{F \partial X} = \left(\frac{11.2 P^{0.7 15}}{f \cdot \rho_q \cdot A}\right) P \tag{7-26}$$

## 8. <u>Equilibrium Relationship</u>

For  ${\rm CO}_2$  molecular sieve systems, adsorption isotherms results, reported in Section 5, were reduced to the expression

$$P_{CO_2} = \exp \left[ -\frac{9166.56}{T_s + 460} + 1.678 \log_e(W_{CO_2}) + 23.823 \right] * (7-27)$$

<sup>\*</sup>This relation should be relied upon only within the temperature range of 20° to 50°C.

TOTAL GAS FLOW RATE, LB/HR

(P) WD(P)



67-1751 Page 7-10

Figure 7-3.

For the  $\rm H_2O$  silica gel system, the equilibrium vapor pressure data published by W. R. Grace & Co. (Reference 7-3) were used to give

$$P_{H_2O} = \exp \left[ 21.08 - \frac{1.075 \times 10^4 (0.852 - 0.3215 \ln W)}{T_s + 460} \right]$$

 $-0.0592 (1p W)^{2}$ 

+0.394 ln W -0.0592 (ln W)<sup>2</sup>]

Equations (7-27) and (7-28) are used in the program, and are compared with test data in Figures 7-4 and 7-5.

#### PROGRAM DESCRIPTION

The main structure of Program S9960, which performs cyclical adsorption-desorption calculations, is depicted in Figure 7-6. The functions of each subroutine will be explained to help the user understand the program better.

#### MAIN PROGRAM (S9960)

This is a main program which coordinates all the subroutines required for predicting the performance of a composite molecular sieve-silica gel bed. The program is executed by the control card

7/8 XQT S9960

All the input data must be inputed via two Block Data subprograms \$9973 and \$9993.

## MADSOR (S9970)

This subroutine monitors the adsorption half cycle calculations. It prints the total quantities of molecular sieve and silica gel pellets in the composite bed for input data check-out purposes. The routine, then, calls STARTA. The time increment size for the next time step is selected such that TI and WI specified in the input data are satisfied. Subroutine ADSORB is then called to advance one time step, and the results are printed if this should be done according to NPRINT.

#### STARTA (\$9978)

Everything which stays constant throughout the entire adsorption half cycle is evaluated in this subroutine. A, RS, CRI, CR2, CR3 are evaluated in the subroutine.

## ADSORB (S9971)

This subroutine simultaneously integrates Equations (7-1), (7-6), and  $\frac{\delta^2 T}{\delta x^2}$  is evaluated (7-12) by a backward difference method, except that the term  $\frac{\delta^2 T}{\delta x^2}$  is evaluated



Figure 7-4. Adsorption Isotherms for CO2 on Molecular Sieve





Figure 7-5. Adsorption Isotherms for Water on Silica Gel





Figure 7-6. Structure of Program \$9960

at the beginning of a time increment, such that no iterations will be required. The use of a complicated scheme like this is to avoid numerical instability at large time increment sizes.

After P 's and W 's at the end of the ( $\Delta$ t) have been found, TSORBA, TGLCOL, HXCORE, GASTA are called to calculate the various temperatures.

In solving a one-dimensional diffusion equation, finite difference equations of the form

$$C_{1,N} \cdot T_{N-1} + C_{2,N} \cdot T_N + C_{3,N} \cdot T_{N+1} = D_N \text{ for } N = 1 \text{ to NDXI}$$
 (7-29)

are written.

The coefficients  $C_1$ ,  $C_2$ ,  $C_3$  are set such that all boundary conditions are satisfied.

The system of equations represented by Equation (7-29) belongs to a special class of equations where a tri-diagonal matrix is involved. Inversion of the matrix is not required, and the method proposed by (Reference 7-4) is employed in solving the set of equations. Both subroutines FDEQIM and FDEQID do the same job of solving the system of equations, the only difference being that the latter uses a double-precision arithmetic.

The coupling of temperatures appearing in the source terms of Equations (7-6), (7-8), and (7-10) are handled by a method similar to the one suggested by DuFort and Frankel (Reference 7-2) for a single diffusion equation. For example, the source term in Equation (7-8) is approximated by

$$\left(\frac{\operatorname{avc} \overset{h}{\times} \operatorname{c}}{\operatorname{C}_{\operatorname{pc}} \cdot \operatorname{\rho}_{\operatorname{c}}}\right) \cdot \left[\mathsf{T}_{\mathsf{x},\,\mathsf{t}} - \frac{\mathsf{T}_{\mathsf{c},\,\mathsf{t}-\Lambda}\,\mathsf{t}}{2} - \frac{\mathsf{T}_{\mathsf{c},\,\mathsf{t}-\Lambda}\,\mathsf{t}}{2}\right] \tag{7-30}$$

#### TSORBA (S9977)

This routine integrates the energy equation for the sorbent during the adsorption half cycle. In other words, Equation (7-6) is integrated.

#### TGLCOL (59987)

Equation (7-8) is solved.

#### HXCORE (\$9991)

Equation (7-10) is solved.

## GASTA (59976)

The routine solves Equation (7-3) for the adsorption half cycle.



#### PRADSB (\$9979)

This is a print routine for the adsorption program.

## MDESOR (59980)

The routine controls desprotion calculations much as MADSOR does the adsorption counterpart. It calls START, picks up a  $\Delta t$ , calls DESORB, PRDESB, and stores temperatures.

## START (S9988)

Similar to STARTA for the adsorption, this subroutine generates all the constants which stay unchanged for the entire desorption half cycle.

## PRDESB (59989)

This is a print routine for the desorption program.

#### DESORB (S9983)

Equations (7-1), (7-6), and (7-19) are solved simultaneously. Because of extremely large coefficients involved, Equation (7-19) is solved by a double precision arithmetic to avoid accumulation of errors. The gas flow rate, density, and composition are then found at each axial location. TSORB, TGLCOL, HXCORE, GAST are called to solve for temperatures.

## TSORB (S9997)

The routine solves for sorbent temperatures in the desorption period.

## GAST (59986)

Gas temperatures in the desorption period are calculated by the subroutine.

## PKEQ (\$9992)

Equations (7-27) and (7-28) are used to obtain the equilibrium  $P_{\text{CO}_2}$  over the molecular sieve bed, and the equilibrium  $P_{\text{H}_2\text{O}}$  over the silica gel bed, respectively.

## IFN (S9981)

The function determines whether a given axial node belongs in the molecular sieve bed or silica-gel bed.

#### FDEQIM (S9984)

The routine solves a system of finite difference equations by the method of Thomas (Reference 7-4).



## FDEQID (S9985)

The subroutine is a double precision version of FDEQIM.

## LAGIN2 (S9996)

This routine performs a Lagrangian polynomial interpolation.

## MAIN PROGRAM (S9950)

This main program just calls MADSOR to perform one adsorption half-cycle calculation. It is executed by

7/8 XQT S9950

## MAIN PROGRAM (S9951)

This main program calls MDESOR to carry out one desorption half-cycle calculation. It is executed by

7/8 XQT S9951

#### VARIOUS OPTIONS OF USING THE PROGRAM PACKAGE

The various options allowed by the present program package are tabulated below.

| How Executed    | Characteristics of Option                                                                                                                                       |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7/8 XQT S9950   | One half-cycle adsorption.                                                                                                                                      |
| 7/8 XQT S9951   | One half-cycle desorption.                                                                                                                                      |
| 7/8 XQT S9960   | NCYLT full cycles of adsorption and desorption.                                                                                                                 |
| NTEMP = 0       | No temperature calculations, with all temperatures set equal to T <sub>268</sub> . No heat transfer area or thermal property data are required for this option. |
| NBCOUT = I      | Bed exit pressure calculated from vacuum duct capacity and total desorption rate.                                                                               |
| NBCOUT = 2      | Bed exit pressure specified in the input data.                                                                                                                  |
| NPSET = I, J, K | Specify modes of applied vacuum.                                                                                                                                |



#### PROGRAM INPUT

Data input required by the program is executed by block data subprograms, \$9973 and \$9993. Subprogram \$9973 inputs all data required to execute the adsorption analysis; subprogram \$9993 inputs all data required to execute the desorption analysis. Both block data subprograms must be compiled at execution time if cyclic system performance is desired. If only adsorption or desorption performance is required, then only the respective block data subprogram need be compiled at execution time. The following lists the variables which are inputted via the block data subprograms.

## Variables Common to Both \$9973 and \$9993

| Fortran<br>Symbol | Maximum<br>Dimension | <u>Definition</u>                                                                                                                                                                                                 |
|-------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RHOS              | (2)                  | Sorbent particle density, lb/(cu ft) RHOS(1) = M.S. particle density RHOS(2) = S.G. particle density                                                                                                              |
| WM                | (2)                  | Adsorbate molecular weight $WM(1) = 44 (CO_2)$ $WM(2) = 18 (H_2O)$                                                                                                                                                |
| RHOSB             | (41)                 | Sorbent bulk density, lb/(cu ft)                                                                                                                                                                                  |
| W                 | (21,41)              | Initial sorbent loading, lb/lb (double precision)                                                                                                                                                                 |
| TG                | (41)                 | Initial gas temperature, <sup>0</sup> F                                                                                                                                                                           |
| TS                | (41)                 | Initial sorbent temperature, <sup>0</sup> F                                                                                                                                                                       |
| тс                | (41)                 | Initial coolant temperature, <sup>0</sup> F                                                                                                                                                                       |
| TX                | (41)                 | Initial heat exchanger temperature, <sup>0</sup> F                                                                                                                                                                |
| NPRINT            | ·                    | Integer control variable which determines the frequency of printout occurrence; e.g., if NPRINT = 2, printout occurs after every TWO time steps, if NPRINT = 5, printout occurs after every five time steps, etc. |
| DTMAX             |                      | Maximum allowable time step size, usually 0.01 hr for isothermal analysis and 0.005 hr for nonisothermal analysis.                                                                                                |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Fortran<br>Symbol | Maximum<br>Dimension |   | <u>Definition</u>                                                                                                                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------------|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NTEMP             | •                    | · | Integer control variable; if NTEMP = 0, isothermal analysis; the energy equations are ignored, and the bed temperature is set equal to T268. If NTEMP \neq 0, non-isothermal analysis. |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ABED              | (41)                 |   | Sorbent bed cross-section area normal to flow of process gas, sq ft                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AVX               | (41)                 |   | Primary heat exchanger plate area per<br>unit volume of heat exchanger core<br>metal, sq ft/(cu ft)                                                                                    |
| (~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TKX               | (41)                 |   | Heat exchanger metal thermal conductivity, TKX (K) denotes that between node K-I and node K                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CPX -             | (41)                 |   | Heat exchanger specific heat, Btu/(°F) (1b)                                                                                                                                            |
| Tagging and the same of the sa | RHOX              | (41)                 |   | Heat exchanger metal density, 1b/(cu ft)                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | нхс               | (41)                 |   | Heat transfer doefficient, heat exchanger to coolant, Btu/(sq ft) (hr) (°F)                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | HXS               | (41)                 |   | Heat transfer coefficient, heat exchanger to sorbent, Btu/(sq ft) (hr) (°F)                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ASX               | (41)                 |   | Heat exchanger primary area per unit volume of sorbent bed, sq ft/(cu ft)                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AG X              | (41)                 |   | Identical to ASX                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CPG               | (41)                 |   | Specific heat of the process gas, Btu/(lb) (°F)                                                                                                                                        |
| ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NDXM .            |                      |   | Integer denoting total number of M.S. nodes                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NDXI              |                      |   | Integer denoting total number of axial nodes                                                                                                                                           |
| insili                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NDR4              |                      |   | Integer denoting total number of radial sorbent pellet nodes (interior nodes)                                                                                                          |
| , in the second  | DX                |                      |   | Axial node dimension, ft                                                                                                                                                               |
| ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | UC                | (41)                 |   | Coolant velocity, ft/hr                                                                                                                                                                |
| . <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CPC               | (41)                 |   | Coolant specific heat, Btu/(lb) (°F)                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                      |   |                                                                                                                                                                                        |

| Fortran<br>Symbol | Maximum<br>Dimension | <u>Definition</u>                                                                                                                                      |
|-------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| RHOC              | (41)                 | Coolant density, 1b/(cu ft)                                                                                                                            |
| T268              | •                    | Coolant inlet temperature, <sup>0</sup> F                                                                                                              |
| DH                | (41)                 | Differential heat of adsorption, Btu/(lb adsorbed)                                                                                                     |
| CYCLE             |                      | Cycle time per one adsorption or one desorp-<br>tion half-cycle, hr                                                                                    |
| DIF               | (41)                 | Internal diffusivity, sq ft/hr                                                                                                                         |
| GK                | (41)                 | External surface mass transfer coefficient, lb-mole/(hr) (sq ft) (mm H <sub>g</sub> )                                                                  |
| SK                | (41)                 | Effective sorbent thermal conductivity, Btu/(hr) (sq ft) (°F/ft)                                                                                       |
| ASG               | (41)                 | Sorbent specific surface area, sq ft/(cu ft of bed)                                                                                                    |
| NOG               |                      | Node to which coolant is added                                                                                                                         |
| HXG               | (41)                 | Heat transfer coefficient, heat exchanger to process gas, Btu/(sq ft) (°F) (hr)                                                                        |
| HSG .             | (41)                 | Heat transfer coefficient, sorbent to gas, Btu/(hr) (sq ft) (°F)                                                                                       |
| NDXMAC            |                      | Integer denoting number of active M.S. nodes, i.e., (NDXM - NDXMAC) represents the number of M.S. nodes which have been inactivated by water-poisoning |
| TI                |                      | Maximum temperature change allowable per time increment in selecting $\Delta t$ , $^{0}F$                                                              |
| WI                |                      | Maximum loading change allowable per time increment in selecting $\Delta t$ , $lb/lb$                                                                  |
| NCYCLT            |                      | Total number of complete adsorption-desorp-<br>tion cycle calculations desired                                                                         |
| -CP.S ,           | (41)                 | Sorbent specific heat, Btu/(lb) (°F)                                                                                                                   |
| AVC               | (41)                 | Primary heat exchanger plate area per unit volume of coolant held up in HX, sq ft/(cu ft)                                                              |

NOTE: Variables W, TG, TS, TC, TX, NPRINT, DTMAX, NTEMP, CYCLE, NCYCLT, WI, TI, NDXMAC need to appear only once either in S9973 or S9993.



#### Input Variables Required by \$9973 Only

#### Fortran Symbol

#### Definition

**GMR** 

Process gas flow rate, 1b/hr

**GMW** 

Process gas molecular weight

PA

System total pressure, mm Hq

PC02C

Initial CO2 partial pressure in cabin, mm Hq

PH201

Inlet H<sub>2</sub>O partial pressure, mm Hg

TGI

Inlet process gas temperature, <sup>0</sup>F

**VOLCAB** 

Cabin volume for atmosphere, cu ft; use  $VOLCAB = 10^{20}$ , for constant PCO2C

RCO<sub>2</sub>C

Rate of CO<sub>2</sub> generation in cabin, 1b CO<sub>2</sub> per hr

NDT CØN

 $I_f = I$ , internal  $\Delta t$  calculations .  $I_f = 2$ ,

fixed ∆t calculations.

## Input Variables Required by \$9993 Only

#### Fortran Symbol

#### Definition

**NBCOUT** 

Integer control variable, if NBCOUT = 2, the outlet manifold pressure is specified as a function of time; NBCOUT = 1, the manifold pressure is computed from vacuum duct resistance.

POUT (10), TIMET (10)

10 pairs of exit pressure vs time data to be used if NBCOUT = 2; POUT = vacuum end manifold pressures (mm Hg), TIMET = times (hr).

NPSET (3)

Denotes nodes to which vacuum applied.

## 1. Molecular Sieve, CO, Adsorption GK and DIF

As discussed in Section 5, it was evident that the controlling factor in CO<sub>2</sub> adsorption by molecular sieves was the lumped value of gas stream to particle boundary mass transfer (plus, possibly, the reaction at the surface of the material). Diffusion through the pore, or internal resistance, was not controlling. Thus, a relatively large value of DIF was selected, 4 by 10<sup>-3</sup> (sq ft)/hr.

Initially the variation of GK during adsorption was thought to be a result of the different residual water loading generally maintained in the two test programs. In the basic laboratory studies the bed was carefully baked at high temperature (600°F) for a number of hours to assure absolute dryness. In the prototype program lower temperatures were used (400°F), reflecting actual bakeout procedures contemplated in the final design. These lower temperatures result in an estimated I percent residual water loading in the molecular sieve, and it was theorized that the presence of this water could have an effect on the mass transfer coefficient. Later study of this phenomenon has altered this view, somewhat, and it is felt that actual bed configuration may be the controlling factor. Of particular significance is the probable channeling occurring in shallow beds with small, straight fin structure providing many short bypass paths along the surface of each fin element. Best values of GK were found ranging from a high of 5 by  $10^{-4}$  for shallow finned beds. Figures 7-7 and 7-8 compare CO<sub>2</sub> breakthrough curves obtained from the deep basic studies beds with prediction using a GK of 5 by 10<sup>-4</sup>. Comparison of GK selection with test results from the 3-in.-deep fresh prototype bed is shown in Figure 7-9. It was found that mixing caused by the use of a small number of axial increments is significant and, therefore, strictly speaking, precise values for constants must depend upon axial increment sizes chosen in calculations. Best values of GK were found for various  $(\Delta X)$ 's and plotted in Figure 7-9. Plot of this variation of GK with  $(\Delta X)$  is shown in Figure 7-10.

Later, as shown in Section 6, the adsorbed water was found to raise the effective mass-transfer coefficient as the loadings became high. The exact value, then, is seen to be rather difficult to establish under highly variant bed conditions.

#### Determination of Constants GK and DIF

Breakthrough curves obtained in the laboratory test programs described in Section 5 and Section 6 were reviewed and used to determine, through a matching procedure, these constants. Two types of beds were tested. In the basic laboratory studies a small, high-aspect-ratio bed was used, with offset fin structure. In the prototype program the bed condiguration was nearer to the final bed design; relatively shadow or low-aspect-ratio beds with continuous fins. A study of the breakthrough curves and desorption pressure vs time profiles from these two test programs indicated that best match of computer prediction with test results was obtained with the following constants.

CO<sub>2</sub> ADSORPTION RUN NO. 2 1.265 L/MIN (STD), 7.15 MM PCO<sub>2</sub> INLET, 25°C PREDICTION WITH GK 5  $\times$  10<sup>-4</sup>, DIF 4  $\times$  10<sup>-3</sup>



Figure 7-7. Computer Comparison of 5/8-in. Bed CO<sub>2</sub> Performance at High Gas Flow



Computer Comparison of 5/8-in. Bed CO<sub>2</sub> Performance at Low Gas Flow Figure 7-8.

#### COMPUTED:

- 8 NODES DX 0.032 FT GK 0.49 × 10<sup>-4</sup>
- 16 NODES DX 0.016 FT GK 0.45 X 10<sup>-4</sup>



Figure 7-9. Effect of Computer Nodal Size on Predicted CO<sub>2</sub> Performance



Effect of Nodal Size on Best Adsorption Mass-Transfer Coefficient Figure 7-10.

|                                             | GK lb-mol/(hr)(sq ft)(mm Hq)                 | DIF sq ft/hr         |
|---------------------------------------------|----------------------------------------------|----------------------|
| Molecular sieve, CO <sub>2</sub> adsorption | 0.4x10 <sup>-4</sup> to 5x10 <sup>-4</sup>   | $4 \times 10^{-3}$   |
| Molecular sieve, CO2 desorption             | 5 x 10 <sup>-4</sup>                         | $4 \times 10^{-3}$   |
| Silica gel, H <sub>2</sub> O adsorption     | $0.7 \times 10^{-3}$ to $1.0 \times 10^{-3}$ | 1 × 10 <sup>-5</sup> |
| Silica gel, H <sub>2</sub> O desorption     | 1 x 10 <sup>-3</sup>                         | 1 × 10 <sup>-5</sup> |

From this analysis a range of GK's is evident, depending upon at least two factors: (I) actual bed configuration as it affects the adequacy of contact between the flowing gas stream and the molecular sieve and (2) water-loading. The values plotted in Figure 7-10 will be conservative for almost all cases, with values of around at least 100 percent larger being possible.

#### 2. Molecular Sieve, Desorption GK and DIF

Best fit with desorption data in both test configurations was found with the higher value of GK,  $5 \times 10^{-4}$  (lb-mol) (hr) (sq ft) (mm Hg), which is not surprising since the variation found in adsorption due to "channeling" would not be prevalent during a vacuum desorption process. Again a high value of DIF was selected,  $4 \times 10^{-3}$  (sq ft)/hr. Figure 7-11 compares the desorption pressure profiles measured during the basic studies in a deep bed with calculations using the selected constants. Figure 7-12 shows the same comparison with prototype bed data. Further configuration of both adsorption and desorption constants was obtained by comparison of predicted cyclic performance of the prototype bed operated adiabatically with test results, as shown in Figure 7-13. As can be seen from Figure 7-13, a general trend toward conservation will be obtained when using these constants.

## 3. Silica Gel, Adsorption and Desorption GK and DIF

Matching of GK and DIF for the deep bed used in the basic studies work resulted in the following constants for both adsorption and desorption:

GK | 
$$\times 10^{-3}$$
 (1b-mol) (hr) (sq ft) (mm Hg)  
DIF |  $\times 10^{-5}$  (sq ft)/hr

Figures 7-14, 7-15, and 7-16 compare the calculated performance of the 5/8-in.-dia silica gel bed vs test results. Figure 7-17 shows the comparison of calculated observed performance of a 3-in.-deep silica gel bed. The test description was given in Section 6.

Matching of the silica gel test results for the prototype bed is described in Section 6.



Pressure Histories During CO2 Desorption from a 5/8-in.-dia Molecular Sieve Bed Figure 7-11.



Pressure Histories During CO<sub>2</sub> Desorption from the Portotype Molecular Sieve Bed Figure 7-12.



PRESSURE, MM Hg



Figure 7-13. Adiabatic  $\mathrm{CO}_2$  Performance of Prototype Bed



Comparison of Predicted and Measured Adsorption Performance of a 5/8-in.-dia Silfcd Call Bed Figure 7-14.



A-24665 -A

Figure 7-15. Comparison of Predicted and Measured Changes in H<sub>2</sub>O Loading on a 5/8-in.-dia Silica Gel Bed During Desorption

= RUN NO. 3 AT 
$$25^{\circ}$$
C  
 $5/8-IN.-DIA$  BED AT A 4  $1/2-IN.$  DEPTH  
= COMPUTER RESULTS WITH  
 $K_{g,H_20} = 10^{-3}$  LB-MOLE (HR)(FT<sup>2</sup>)(MM Hg)  
 $D_{H_20} = 10^{-5}$  FT<sup>2</sup>/HR



Figure 7-16. Pressure History During Desorption of H<sub>2</sub>0 from a 5/8-in.-dia Silica-Gel Bed (77°F)



Figure 7-17. Water Breakthrough on 3-in. Silica Gel Bed

### Various Heat Transfer Coefficients for the Final Bed

In estimating the heat transfer coefficients to be used in the final bed design calculations, the following bed properties are used:

$$p_{\dot{x}}$$
, M.S. = 64 lb/cu ft

$$p_{sb}$$
, M.S. = 34.2 lb/cu ft

$$a_{sg}$$
, M.S. = 540 sq ft/cu ft

Apparent molecular sieve particle diameter is

$$d_{M.S.} = \frac{6 \times 34.2}{64 \times 500} = 0.00642 \text{ ft}$$

$$f = 0.46$$

$$\rho_{s, S.G.} = 75 \text{ lb/cu ft}$$

$$\rho_{sb}$$
, S.G. = 37 lb/cu ft

$$a_{sg}$$
, S.G. = 700 sq ft/cu ft

Apparent silica gel particle diameter is

$$d_{S.G.} = \frac{6 \times 37}{75 \times 700} = 0.00423 \text{ ft}$$

$$f = 0.5$$

### Sorbent-to-Gas Heat Transfer Coefficient

Using a correlation given by Pfeffer and Happel (Reference 7-5), at Peclet number of 2.5 and void fraction of about 0.5, one obtains a Nusselt number of roughly 10. Using this and the thermal conductivity of 0.01475 Btu/(hr) (sq ft) ( $^{\circ}$ F/ft) for  $0_2$ , there are obtained

$$h_{sg}$$
, M.S. adsorption = 23 Btu/(hr) (sq ft) ( ${}^{\circ}F$ )

$$h_{sg}$$
, S.G. adsorption = 35 Btu/(hr) (sq ft) ( ${}^{o}F$ )

During the desorption period, thermal conductivities of  $CO_2$  and that of  $CO_2$ - $H_2O$  mixture are corrected for pressure effect by the method given by Schotte (Reference 7-6). By assuming an average pressure of I mm Hg in the M.S. bed, and 0.5 mm Hg in the S.G. bed, the gas phase thermal conductivities are found to be 0.00194 and 0.00079 Btu/(hr) (sq ft)( $^{0}F/ft$ ). Using these values, particle surface film heat transfer coefficients are found to be

$$h_{sg}$$
, M.S., desorption = 3.02 Btu/(hr) (sq ft) (°F)  
 $h_{sg}$ , S.G., desorption = 1.87 Btu/(hr) (sq ft) (°F)

### 2. Heat Exchanger-to-Gas Heat Transfer Coefficient

Assuming that the sorbent-to-gas film transfer coefficients obtained in the preceding part can be employed for the film coefficients in the present case, after correcting for the fin effectiveness and area factor (Reference 7-7), we obtain

It should be noted that the above heat transfer coefficients are based on the primary plate area, which does not include fin areas.

## 3. <u>Effective Thermal Conductivity of Sorbent Bed</u>

Phillips, et al, experimentally obtained a correlation for the effective thermal conductivity of a 1/8-in. molecular sieve bed as a function of gas thermal conductivity and gas flow rate (Reference 7-8). Assuming their results can be applied to our final composite bed, which is made up of 1/16-in. molecular sieve pellets and 10-16 mesh silica gel pellets, we obtain

During adsorption 
$$k_s = 0.10 \text{ Btu/(hr)} \text{ (sq ft) (}^{\circ}\text{F/ft)}$$
  
During desorption  $k_s = 0.08 \text{ Btu/(hr)} \text{ (sq ft) (}^{\circ}\text{F/ft)}$ 

# 4. Heat Exchanger-to-Sorbent Heat Transfer Coefficient

Assuming an effective length of conductance of 0.1 in. between the heat exchanger core metal and the sorbent, and using a bed conductivity of 0.08, we readily obtain

$$h_{xs} = 9.6 Btu/(sq ft) (hr) (^{o}F)$$

# NOMENCLATURE

| Algebraic        | Fortran   | Definition                                                                                   |
|------------------|-----------|----------------------------------------------------------------------------------------------|
| <b>A</b>         | ABED(41)  | Cross-sectional area of adsorbent bed, sq ft                                                 |
| a<br>sg          | ASG(41)   | External surface area of sorbent, sq ft/(cu ft of bed)                                       |
| a<br>vc          | AVC(41)   | Primary heat transfer area for coolant, sq ft/ (cu ft of coolant volume)                     |
| a<br>vx          | AVX(41)   | Primary heat transfer area for heat exchanger, sq ft plate area/(cu ft of metal)             |
| a<br>×g          | AXG(41)   | Primary heat transfer area between heat exchanger and gas stream, sq ft/cu ft of sorbent bed |
| a<br>xs          | AXS(41)   | Primary heat transfer area between heat exchanger and sorbent, identical to a                |
| C                | C(41)     | Molal density of gas mixture lb moles/ (cu ft)                                               |
| Cpc              | CPC(41)   | Heat capacity of coolant, Btu/(°F) (1b)                                                      |
| c <sub>pg</sub>  | CPG(41)   | Heat capacity of gas mixture, Btu/(°F) (1b)                                                  |
| c <sub>px</sub>  | CPX(41)   | Heat capacity of heat exchanger metal, Btu/(°F) (1b)                                         |
| $D_{\mathbf{k}}$ | DIF(41)   | Mass diffusivity of component k through the interior of sorbent, sq ft/hr                    |
| F                | F(41)     | Factor defined by Equation (7-16), a function of pressure                                    |
| $F_{N_2}$        | •         | Factor F for the flow of $N_2$ gas through M.S. bed                                          |
| f                | VøIDF(41) | Void fraction of bed                                                                         |
| G                |           | Mass flux = $u_g p_g$ , $lb/(hr)$ (sq ft void area)                                          |
| Gt               | GMR       | Total mass flow rate, lb/(hr)                                                                |

|                           | •              |                                                                                                                                                                         |
|---------------------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Algebraic                 | <u>Fortran</u> | <u>Definition</u>                                                                                                                                                       |
| $\Delta^{H}_{\mathbf{k}}$ | DH(41)         | Heat of adsorption at each node Btu/(lb adsorbed)                                                                                                                       |
| h<br>s g                  | HSG(41)        | Heat transfer coefficient between sorbent and gas, based on a sg, Btu/(sq ft) (°F) (hr)                                                                                 |
| h <sub>xc</sub>           | HXC(41)        | Heat transfer coefficient between heat exchanger primary plate and coolant, Btu/(sq ft) (°F) (hr)                                                                       |
| h<br>xg                   | HXG(41)        | Heat transfer coefficient between heat exchanger primary plate and gas stream, Btu/(sq ft) (°F) (hr)                                                                    |
| h<br>xs                   | HXS(41)        | Effective heat transfer coefficient between heat exchanger primary plate and sorbent Btu/(sq ft) (°F) (hr)                                                              |
| · K <sub>g</sub>          | GK(41)         | Mass transfer coefficient between bulk stream and the surface of adsorbent. Surface kinetic rate can be incorporated in this coefficient, lb-moles/(hr) (sq ft) (mm Hg) |
| k <sub>s</sub>            | SK(41)         | Effective thermal conductivity of sorbent bed, Btu/(hr) (sq ft) (°F/ft)                                                                                                 |
| k <sub>x</sub>            | TKX(41)        | Thermal conductivity of heat exchanger core metal, Btu/(hr) (sq ft) (°F/ft)                                                                                             |
| Msg                       |                | Molal rate of mass transfer into bulk gas<br>stream/unit bed volume, lb-moles per<br>(cu ft of bed) (hr); See Eq. (7-15)                                                |
| <b>M</b> .                |                | Index denoting interior radial node in sorbent                                                                                                                          |
| M <sub>s</sub>            |                | Interior node corresponding to the surface of pellet                                                                                                                    |
| Mwk                       | SM(K)          | Molecular weight of component K. $K = I$ and 2                                                                                                                          |
| P                         | P(41)          | Total pressure in bulk gas stream, mm Hg                                                                                                                                |
| P <sub>k</sub>            | PK(K,41)       | = $P.X_k$ ; Partial pressure of component $k$ in bulk gas stream, mm Hg                                                                                                 |

| Algebraic          | Fortran   | <u>Definition</u>                                                                                                                                   |
|--------------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| P <sub>ks</sub>    |           | Equilibrium pressure of component k at surface of sorbent, mm Hg                                                                                    |
| R                  | RGAS      | <pre>Gas constant, 554 (mm Hg)(cu ft)/(lb-mole) (OR)</pre>                                                                                          |
| , <b>r</b> .       |           | Radial distance from center of sphere, ft                                                                                                           |
| r <sub>M</sub>     |           | r at interior node M, ft                                                                                                                            |
| r <sub>s</sub>     |           | Average particle radius found from \$\rho\$ and asg, ft                                                                                             |
| t ,                |           | Time, hr                                                                                                                                            |
| Δt                 |           | Time increment, hr                                                                                                                                  |
| T <sub>c</sub>     | TC(41)    | Coolant temperature, <sup>0</sup> F                                                                                                                 |
| Tg                 | TG(41)    | Gas temperature, <sup>0</sup> F                                                                                                                     |
| T <sub>s</sub>     | TS(41)    | Sorbent temperature, <sup>0</sup> F                                                                                                                 |
| т <sub>ж</sub> .   | TX(41)    | Heat exchanger core metal temperature, <sup>0</sup> F                                                                                               |
| Т <sub>д</sub> і   | TGI       | Inlet gas temperature for adsorption cycle, of                                                                                                      |
| T <sub>268</sub>   | T268      | Inlet glycol temperature, <sup>0</sup> F                                                                                                            |
| u<br>C             | UC(41)    | Coolant velocity, ft/hr                                                                                                                             |
| u<br>g             | UG(41)    | Interstitial gas velocity, i.e., true gas velocity, ft/hr                                                                                           |
| Δ.                 |           | Size of each sorbent interior node, cu ft                                                                                                           |
| W <sub>k</sub>     | W(21, 41) | Local loading of component k in sorbent, lb adsorbate k/lb sorbent                                                                                  |
| W <sub>d</sub> (P) |           | A function of pressure which represents the capacity of vacuum duct, lb/hr                                                                          |
| <b>x</b>           |           | Distance from molecular sieve bed end, ft                                                                                                           |
| x <sub>k</sub>     | X(41)     | Mole fraction of component k in gas stream. k refers to $\mathrm{CO}_2$ in M.S. bed gas stream, and $\mathrm{H}_2\mathrm{O}$ in S.G. bed gas stream |

| Algebraic       | Fortran   | <u>Definition</u>                           |
|-----------------|-----------|---------------------------------------------|
| ×o              |           | Total combined bed depth, ft                |
| Greek Letter    | <u>S</u>  |                                             |
| ρ <sub>c</sub>  | RHØC(41)  | Coolant density, lb/(cu ft)                 |
| ρg              | RHøG(41)  | Gas density, lb/(cu ft)                     |
| P <sub>s</sub>  | RHφS(2)   | .Sorbent density, lb/(cu ft particle)       |
| ρ <sub>sb</sub> | RHØSB(41) | Sorbent bulk density, lb/(cu ft bed volume) |
| Subscripts      |           |                                             |
| b               |           | Bulk                                        |
| - c             |           | Coolant                                     |
| g               |           | Gas stream                                  |
| i               |           | Inlet                                       |
| k               |           | Component k                                 |
| M               |           | Sorbent interior node                       |
| S               | ·         | Surface of sorbent                          |
| S               |           | Sorbent                                     |
| t               |           | At time t                                   |
| <b>v</b> .      | •         | Volume                                      |
| · x             |           | Heat exchanger                              |

### EXAMPLE INPUT AND OUTPUT

As an example of the program usage, the input data required for predicting the performance of the composite bed, which is described in Section 8, are given in Appendix D. Example outputs of the adsorption period are given in Appendix E, and those of the desorption period are given in Appendix F.

#### COMPLETE LISTING OF SOURCE PROGRAM

A complete listing of the Fortran source program is given in Appendix G.



#### REFERENCES

- 7-1. Hwang, K.C., "A Mathematical Study of the Transient Behavior of a Fixed-Bed Catalytic Reactor," A PhD Dissertation, University Microfilms, Inc., Ann Arbor, Michigan.
- 7-2. DuFort, E.C. and S.P. Frankel, Math. Tables and Other Aids to Computation, 7, p. 135, 1953.
- 7-3. W.R. Grace and Co., Davison Chemical Division, Technical Bulletin 202, January 1965.
- 7-4. J. Todd, "Survey of Numerical Analysis," pp 395, McGraw-Hill Book Company, Inc., 1962.
- 7-5. Pfeffer, R. and J. Happel, A.I.Ch.E. Jour. 10, 605, 1964.
- 7-6. Schotte, W., "Thermal Conductivity of Packed Beds," A.I.Ch.E. Jour., 6, 63-67, March 1960.
- 7-7. Kays, W.M., and A.L. London, "Compact Heat Exchangers," 2 ed., McGraw-Hill Book Company, 1964.
- 7-8. Phillips, B.D., F.W. Leavitt and C.Y. Yoon, "Heat Transfer with Molecular Sieve Adsorbent," <u>Chem. Engrq. Progr. Symposium Series</u>, 56, 219-228.

#### SECTION 8

#### BED DESIGN

The data taken on the small, 5/8-in.-diameter bed and on the 3-in.-deep prototype bed were used to identify the mass and heat transfer parameters necessary to describe the mixed gas adsorption and desorption processes. Using these parameters it was possible to simulate any bed configuration with any gas flow, coolant flow, cabin size, and  $CO_2$  or  $H_2O$  production rate. The computer program, which simulates bed performance under the operating conditions input to it, then revealed the  $CO_2$  and  $H_2O$  removal rate under these conditions. From simple mass balances the program also calculated the instantaneous change in cabin  $CO_2$  pressure and the poisoning rate of the moelcular sieve bed due to the water effluent from the silica gel predryer.

The total bed size, including the silica gel and molecular sieve and the ducting was fixed by the geometry of the enclosure in the spacecraft. Bed design became a matter of choosing the best division of total sorbent volume between silica gel and molecular sieve, the gas flow rate, the heat exchanger configuration, the heat transfer fluid flow rates and temperatures, and the cycle time. The design performance criteria were a cabin CO<sub>2</sub> level of no higher than 7.6 mm Hg at a production of 0.264 lb CO<sub>2</sub>/hr and a bed life until bakeout of at least 45 days. The design was accomplished by varying one operating parameter at a time to find the approximate optimum of all.#

Several computer calculations were made to determine the effect of each parameter. Because the silica gel bed performance seemed difficult to predict with a great degree of certainty, a length of 3 in. was assumed great enough to prevent breakthrough at any operating conditions being considered and also to prohibit channeling. This fixed the molecular sieve bed length at 7.63 in. The predicted outlet dew point was fairly constant all through the cycle and depended primarily on desorption performance. This, in turn, depended on the amount of stripping provided by the desorbing CO<sub>2</sub> from the molecular sieve bed.

The molecular sieve bed must be initially baked out before flight. An electric heating matrix was provided in the major portion of the bed (see Figure 8-I). This unit would also be used for regeneration in the case of accidental water poisoning in flight. To regenerate the sieve to acceptably low residual water requires temperatures of  $400^{\circ}$ F. A glycol or water heat exchanger would not withstand this, so were not permitted in this molecular sieve section. However, since the heat of adsorption of  $CO_2$  is low, the adverse temperature swing in an adiabatic bed is not large. Also, without a liquid heat exchanger, more volume remains for sorbent material.

<sup>\*</sup>A more sophisticated optimization approach was not felt justified due to the approximate nature of several of the coefficients and also because of the complexity of the process.





Figure 8-1. Adsorbent Cannister

For purposes of calculation, the molecular sieve bed was divided into an active portion and a water-poisoning "dump," adjacent to the silica gel bed. The life of a given bed is determined by how long it will take to completely fill the "dump" section of the molecular sieve with the water vapor effluent from the silica gel bed. Thus, with a fixed total molecular sieve bed size, a larger active bed means a smaller "dump," and hence shorter bed life. But the longer active bed naturally increases the CO2 removal rate. So conditions must be found where the bed life is at least 45 days, at which time the CO2 removal rate remains at least 0.264 lb/hr. In reality, the active bed decreases in size all during the days of operation. The calculations are performed, in effect, at the worst possible time, when the entire section allotted for water poisoning has been poisoned. Additional conservatism was achieved by initially subtracting from the active bed I in. of sieve to account for a water loading profile not as sharply defined as anticipated.

The predicted effect of flow rate on  $\mathrm{CO}_2$  performance is shown in Figure 8-2 at one cycle time, 15 min. The bed length is that length of sieve not water poisoned. Increasing flow rate increases the  $\mathrm{CO}_2$  removal rate, but also increases the water poisoning rate due to the faster breakthrough of the silica gel. The effect of active molecular sieve depth is also shown. At a given active bed length, the higher flow rates produce better  $\mathrm{CO}_2$  removal rates but also lower bed life. Increasing the active bed length increases the removal rate.

The effect of cycle time on  $\mathrm{CO}_2$  performance and poisoning is shown in Figure 8-3. Here the effects of varying the active and "dump" sections of the molecular sieve bed become apparent. The total molecular sieve bed is composed of 18 equal sized nodes for computation purposes. The total weight is 9.56 lb. The curves referred to the left-hand ordinate show the effects of increasing active bed size and gas flow rate on  $\mathrm{CO}_2$  removal. Increases in either aid the removal rate. However, increasing the active bed lowers the available "dump" size. The curves referred to the right-hand ordinate show this effect. The lower "dump" size lowers the days of operation until the dump is completely filled with water. Longer cycle time is seen to decrease both bed life and  $\mathrm{CO}_2$  removal performance. However, longer cycle times are desirable from the viewpoint of wear on switching components such as gas and coolant valves.

The operating point was chosen in Figure 8-2 as 10 lb/hr gas flow with 13 nodes considered active. The 5 nodes left for water poisoning yield as predicted bed life of 45 days at a cycle time of 20 min. However, because the curves are very flat, the precise values awaited performance testing. Confidence was gained in the design chosen even though it was not possible to specify exactly operation parameters. The calculations did show the range of these parameters which would yield the desired bed performance.

#### Bed Physical Characteristics

The final bed design is shown as Figure 8-1. A photograph of the two beds mounted in their frame is Figure 8-4. Figure 8-5 shows the integration into the command module. Figure 8-6 is the schematic of the ducting arrangement for the system.





Figure 8-2. Predicted Effect of Bed Size and Gas Flow on  ${\rm CO_2}$  Removal



Flow on CO<sub>2</sub> Removal and Bed Life Gas Predicted Effects of Cycle Time and Figure 8-3.



Figure 8-4. Regenerable CO<sub>2</sub> Removal System





Regenerative CO<sub>2</sub> Removal System Integrated with the Apollo Block II ECS Figure 8-5.



Schematic of AAP Regenerative  $\mathrm{CO}_2$  Removal System Figure 8-6.

#### APPENDIX A

### THERMODYNAMICS OF ADSORPTION

Consider n moles of gas physically adsorbed upon an inert adsorbent and having energy  $E_s$ , entropy  $S_s$ , volume  $V_s$ , and area a. This adsorption, except for hysteresis, is then reversible. The energy of the system, by the first law of thermodynamics, is a perfect differential, and can be written as a function of the aforementioned extensive variables in the following manner:

$$dE = \left(\frac{\partial E}{\partial S}\right)_{V, n, a} dS + \left(\frac{\partial V}{\partial E}\right)_{S, n, a} dV + \left(\frac{\partial E}{\partial a}\right)_{S, V, n} da + \left(\frac{\partial E}{\partial n}\right)_{S, V, a} dn \qquad (A-1)$$

For simplicity, the subscripts s referring to the adsorbed phase have been omitted and will be understood implicity henceforth.

The differential coefficients are defined, respectively, to be the temperature, T, pressure, P, surface pressure,  $\phi$ , and chemical potential u, of the adsorbate with algebraic signs designated as follows:

$$dE = TdS - PdV - \phi da + \mu dn$$
 (A-2)

Since E is a homogeneous function of the first degree in extensive variables S, V, a, and n, Equation (A-2) integrates directly to

$$E = TS - PV - \phi a + \mu n \tag{A-3}$$

Taking the total differential of each term in the preceding equation, the next relationship follows:

$$dE = TdS + SdT - PdV - VdP - \phi da - ad\phi + Udn + ndU$$
 (A-4)

If Equation (A-2) is subtracted from Equation (A-4), the result is

$$nd_{LL} = -SdT + VdP + ad\phi$$
 (A-5)

Let 
$$\Gamma_1 = \frac{a}{n}$$
,  $s = \frac{S}{n}$ , and  $v = \frac{V}{n}$ ; also  $\Gamma = \frac{n}{a}$  and  $e = \frac{E}{n}$  (A-6)

Then 
$$d\mu = -sdT + vdP + \Gamma d\phi$$
 (A-7)

Consider now the gaseous phase in equilibrium with the adsorbate. It will be assumed that the pressure and temperature of this phase has become equal to those that have been designated T and P in the adsorbed layer. Then by a similar sequence of steps, the following applies to the gas phase where the subscript G refers to its state.

$$d\mu_{G} = -s_{G}dT + v_{G}dp \qquad (A-8)$$

At equilibrium

$$\mu_{G} = \mu \tag{A-9}$$

consequently,

$$-s dT + v dP + \Gamma d\phi = -s_G dT + v_G dP$$
 (A-10)

constant Ø

$$\left(\frac{\partial L}{\partial L}\right)^{Q} = \frac{(A^{C} - A)}{(B^{C} - A)} \tag{V-11}$$

At constant T

$$\left(\frac{\partial \phi}{\partial P}\right)_{\Gamma} = (v_{G} - v)\Gamma, \qquad (A-12)$$

The preceding equation shows how to obtain  $\phi$  from isothermal data which is the familiar Gibbs Isotherm for spreading of surface layers. Equation (A-II), on the other hand, is the analog of the usual change of phase equation such as the Clapeyron one. In fact, it can be written in more familiar form by means of Equation (A-3) and its counterpart for the gas phase.

Rewrite Equation (A-3) as follows for n = 1

$$\mu = e + Pv - Ts + \phi \Gamma_{1} \qquad (A-13)$$

Similarly, for the gas phase

$$\mu_{G} = e_{G} + Pv_{G} - Ts_{G} \tag{A-14}$$

Utilizing Equation (C-9)

$$e + Pv - Ts + \phi\Gamma = e_G + Pv_G - Ts_G$$
 (A-15)

Then

$$T(s_G - s) = h_G - (h + \phi \Gamma_I)$$
 (A-16)

where h = e + Pv.

The right-hand side of the preceding can be designated as a generalized  $\Delta h$ . Then Equation (A-II) can be written

$$\left(\frac{\partial P}{\partial T}\right)_{\sigma} = \frac{\Delta h}{T\Delta v} \tag{A-17}$$

where 
$$\Delta v = v_c - v$$

Closer scrutiny of Equation (A-2) shows that the adsorbate state is really the difference between that of the pure solid and solid plus adsorbed phase, provided the subdivision and specific surface are retained. Then  $\phi$  receives its interpretation as follows:

$$\phi a = (\gamma_0 - \gamma)a \qquad (A-18)$$

where  $\gamma_0$  and  $\gamma$  represent the surface tensions before and after adsorption. This is the equivalent of the spreading pressure encountered in other surface systems. As another consequence, the remaining variables of Equation (A-2) acquire their customary interpretation; e.g., P is the hydrostatic pressure.

As corollaries, if the solid is still assumed to be inert, the phase boundary can be rigidly designated as the solid surface and the quantities treated in the counterpart of Equation (A-2). The Gibbsian form of the succeeding relations derivable from Equation (A-2), dealing with surface excesses only, is indistinguishable from the foregoing results. On the other hand, if the solid plus adsorbate is treated as one phase and the treatment following Equation (A-2) is parallel, allowances for changes in dimensions in the adsorbant plus adsorbate can be allowed for. The results would still have the same form.

For changes in dimension, use Equation (A-7) with the understanding that it refers to the last named system. Then

$$\left(\frac{\partial^{\Lambda}}{\partial \mu}\right)^{L, \phi} = \left(\frac{\partial^{D}}{\partial \mu}\right)^{L, \phi} \left(\frac{\partial^{\Lambda}}{\partial \mu}\right)^{L, \phi} \tag{A-19}$$

or

$$\left(\frac{\partial^{\Lambda}}{\partial h}\right)^{T,\phi} = \Lambda\left(\frac{\partial^{\Lambda}}{\partial b}\right)^{T,\phi} = -B \tag{A-50}$$

utilizing the usual definition of bulk modulus.

If Equation (A-7) is integrated at constant T and P employing the same technique as with Equation (A-2).

$$\mu \Gamma_{1} \phi$$
 (A-21)

Therefore, isosteric measurements of size changes should be feasible. The literature now abounds with them. The surface tensions of the pure solids have been obtained in some cases by heats of solution of various areas extrapolated to zero area. Otherwise the third law of thermodynamics is used to measure s and h by means of the  $\Delta C_p$  of the elements. Apply Equation (A-16)

to the pure solid alone. The  $\Delta$  sign signifies formation from the elements, and  $\Gamma_1$  becomes the specific surface area,

$$T\Delta s = \Delta h - \gamma_0^{\Gamma}$$
 (A-22)

$$\gamma_{0}^{\Gamma} = \Delta h - T \Delta s \qquad (A-23)$$

where  $\phi$  has now been replaced by  $\gamma_{_{\mbox{\scriptsize O}}}.$  Equation (A-23) is the basis of the Jura-Garland method.

The above exhausts what thermodynamics can supply in the way of measurement elucidation. Mobility on the surface may be deduced from the measurements described by Equations (A-II) and (A-I2). The importance for bed studies has been expounded in the technical section.

To detect the condition of the surface groups of the solid that because of their unsaturated valences or defects possess permanent magnetic moments, magnetic resonance techniques are finding increasing use. The changes in the gaseous adsorbate upon its condensation are now being studied by infrared absorption spectrometry. The nature of the adsorption forces for physical adsorption can then be characterized more fully and a better formulation made of the van der Waal's forces.

FUNDAMENTALS OF MASS BALANCES AND THEIR SIMPLIFICATION

Partial Molal Volumes and Their Possible Simplification of the Diffusion Equation

$$dV = \left(\frac{\partial V}{\partial T}\right)_{P,N_{2}} dt + \left(\frac{\partial P}{\partial V}\right)_{T,N_{2}} dP + \left(\frac{\partial N_{2}}{\partial V}\right)_{T,P,N_{3}} dN; \tag{B-1}$$

Let

(Note: A subscript that appears twice in a product implies a summation.)

Assume an infinitesimal change dy, all else constant such as

The change is made holding all else constant

or

The following Gibbs-Duhem relation then can be applied

$$\left(\frac{\partial V}{\partial V}\right)^{P}$$
,  $dT + \left(\frac{\partial F}{\partial V}\right)^{T}$ ,  $dP + \overline{V}$ ,  $dN^{T} = \overline{\Lambda}^{T}$ ,  $dN^{T} + N^{T}$ 

or

$$\left(\frac{\partial V}{\partial V}\right)_{P_{i}U_{i}} dT + \left(\frac{\partial V}{\partial V}\right)_{T_{i}N_{i}} dP = N_{i} dV_{i}$$

(B-3)

Equation (B-2) can be rewritten as follows:

Let m, be the mass of species i, and M the mol, wt.

$$V = \overline{V}_i - \frac{m_i}{M_i}$$

Then, if

$$\int_{\lambda}^{2} = \frac{m_{\lambda}}{V}$$

$$1 = \frac{\overline{V_i}}{M_i} \sum_{k=1}^{N_i} (B-4)$$

which is the relation that is desired.

For a binary system

$$1 = \frac{\overline{V}_A}{M_A} \int_A + \frac{\overline{V}_B}{M_B} \int_B^C$$
 (B-5)

Another relation that is needed is

where

$$\omega_{A} = \frac{\rho_{A}}{\rho}$$

since

$$\nabla f_{A}^{\rho} = \frac{\partial f_{A}}{\partial \omega_{A}} \nabla \omega_{A} \tag{B-6}$$

From Equation (B-2) for binary system

$$V = \overline{V}_A N_A + \overline{V}_B N_B$$

$$V = \frac{V_A}{M_A} m_A + \frac{V_R}{M_A} m_B$$

If the preceding equation is divided by m, the total mass,

$$\frac{1}{\rho} = \frac{\overline{V_A}}{M_A} \omega_A + \frac{\overline{V_B}}{M_B} \omega_B$$
 (B-7)

The same result also follows from Equation (B-5)

$$d\left(\frac{1}{P}\right) = \frac{\overline{V}_{A}}{M_{A}}d\omega_{A} + \frac{\overline{V}_{B}}{M_{B}}d\omega_{B}$$

$$\frac{\partial}{\partial x} + \frac{\partial}{\partial y} = 1$$

$$\frac{\partial}{\partial w} = -\partial \omega_{B}$$

$$\frac{\partial}{\partial x} = -\frac{\partial}{\partial w} = \frac{\overline{V}_{A}}{\overline{M}_{A}} - \frac{\overline{V}_{B}}{\overline{M}_{B}} \cdot \frac{\partial}{\partial w} = \frac{\overline{V}_{A}}{\overline{M}_{A}} - \frac{\overline{V}_{B}}{\overline{M}_{B}} \cdot \frac{\overline{V}_{B}}{\overline{M}_{A}}$$

$$\frac{\partial}{\partial x} = \frac{\partial}{\partial x} - \frac{\overline{V}_{A}}{\overline{M}_{A}} - \frac{\overline{V}_{A}}{\overline{M}_{A}}$$

$$\frac{\partial}{\partial x} = \frac{\partial}{\partial x} - \frac{\overline{V}_{A}}{\overline{M}_{A}} - \frac{\overline{V}_{A}}{\overline{M}_{A}}$$

$$\frac{\partial}{\partial x} = -\frac{\partial}{\partial x} - \frac{\overline{V}_{A}}{\overline{M}_{A}} + \frac{\overline{V}_{A}}{\overline{M}_{A}}$$

$$\frac{\partial}{\partial x} = -\frac{\overline{V}_{A}}{\overline{M}_{A}} + \frac{\overline{V}_{A}}{\overline{M}_{A}} - \frac{\overline{V}_{A}}{\overline{M}_{A}}$$

$$\frac{\partial}{\partial x} = -\frac{\overline{V}_{A}}{\overline{M}_{A}} - \frac{\overline{V}_{A}}{\overline{M}_{A}} + \frac{\overline{V}_{A}}{\overline{M}_{A}} - \frac{\overline{V}_{A}}{\overline{M}_{A}}$$

$$\frac{\partial}{\partial x} = -\frac{\overline{V}_{A}}{\overline{M}_{A}} - \frac{\overline{V}_{A}}{\overline{M}_{A}} + \frac{\overline{V}_{A}}{\overline{M}_{B}} - \frac{\overline{V}_{A}}{\overline{M}_{A}}$$

$$\frac{\partial}{\partial x} = -\frac{\overline{V}_{A}}{\overline{M}_{A}} - \frac{\overline{V}_{A}}{\overline{M}_{A}} + \frac{\overline{V}_{A}}{\overline{M}_{B}} - \frac{\overline{V}_{A}}{\overline{M}_{B}} - \frac{\overline{V}_{A}}{\overline{M}_{A}}$$

$$\frac{\partial}{\partial x} = -\frac{\overline{V}_{A}}{\overline{M}_{A}} - \frac{\overline{V}_{A}}{\overline{M}_{A}} + \frac{\overline{V}_{B}}{\overline{M}_{B}} - \frac{\overline{V}_{A}}{\overline{M}_{B}} - \frac{\overline{V}_{A}}{\overline{M}_{A}}$$

Thus,

$$\frac{dP_A}{d\omega_A} = \rho^2 \frac{V_B}{M_B} \tag{B-9}$$

Now the relation between the following is desired

$$\vec{v} = \omega_A \vec{v}_A + \omega_B \vec{v}_B$$

and

$$\overrightarrow{v} = P_A \overrightarrow{v_A} \frac{\overrightarrow{V_A}}{M_A} + P_B \overrightarrow{v_B} \frac{\overrightarrow{V_G}}{M_B}$$
 (B-11)

If the following is considered

$$P j_{A} = P \left[ P_{A} v_{A} - P_{A} \omega_{A} v_{A} - P_{A} \omega_{B} v_{B} \right]$$

$$= P \left[ P_{A} v_{A} \left( 1 - \omega_{A} \right) - P_{A} v_{B} \omega_{B} \right]$$

$$= P \left[ P_{A} \omega_{B} \left( v_{A} - v_{B} \right) \right]$$

$$= P_{A} P_{B} \left( v_{A} - v_{B} \right)$$
(B-12)

and it

$$\vec{J}_{A}^{\circ} = P_{A} \left[ \overrightarrow{v_{A}} - P_{A} \overrightarrow{v_{A}} \frac{\overrightarrow{V_{A}}}{\overrightarrow{M_{A}}} - P_{B} \overrightarrow{v_{B}} \frac{\overrightarrow{V_{B}}}{\overrightarrow{M_{B}}} \right]$$

$$= P_{A} \left[ P_{A} \frac{\overrightarrow{V_{A}}}{\overrightarrow{M_{A}}} \overrightarrow{v_{A}} + P_{B} \frac{\overrightarrow{V_{B}}}{\overrightarrow{M_{B}}} \overrightarrow{v_{A}} - P_{A} \frac{\overrightarrow{V_{A}}}{\overrightarrow{M_{A}}} \overrightarrow{v_{A}} - P_{B} \frac{\overrightarrow{V_{B}}}{\overrightarrow{M_{B}}} \right]$$

$$= P_{A} \left[ P_{A} \frac{\overrightarrow{V_{A}}}{\overrightarrow{M_{A}}} \overrightarrow{v_{A}} + P_{B} \frac{\overrightarrow{V_{B}}}{\overrightarrow{M_{B}}} \overrightarrow{v_{A}} - P_{A} \frac{\overrightarrow{V_{A}}}{\overrightarrow{M_{A}}} \overrightarrow{v_{A}} - P_{B} \frac{\overrightarrow{V_{B}}}{\overrightarrow{M_{B}}} \right]$$

$$= P_{A} \left[ P_{A} \frac{\overrightarrow{V_{A}}}{\overrightarrow{M_{A}}} \overrightarrow{v_{A}} + P_{B} \frac{\overrightarrow{V_{B}}}{\overrightarrow{M_{B}}} \overrightarrow{v_{A}} - P_{A} \frac{\overrightarrow{V_{A}}}{\overrightarrow{M_{A}}} \overrightarrow{v_{A}} - P_{B} \frac{\overrightarrow{V_{B}}}{\overrightarrow{M_{B}}} \right]$$

$$= P_{A} \left[ P_{A} \frac{\overrightarrow{V_{A}}}{\overrightarrow{M_{A}}} \overrightarrow{v_{A}} + P_{B} \frac{\overrightarrow{V_{B}}}{\overrightarrow{M_{B}}} \overrightarrow{v_{A}} - P_{A} \frac{\overrightarrow{V_{A}}}{\overrightarrow{M_{A}}} \overrightarrow{v_{A}} - P_{B} \frac{\overrightarrow{V_{B}}}{\overrightarrow{M_{B}}} \right]$$

$$= P_{A} \left[ P_{A} \frac{\overrightarrow{V_{A}}}{\overrightarrow{M_{A}}} \overrightarrow{v_{A}} + P_{B} \frac{\overrightarrow{V_{B}}}{\overrightarrow{M_{B}}} \overrightarrow{v_{A}} - P_{A} \frac{\overrightarrow{V_{A}}}{\overrightarrow{M_{A}}} \overrightarrow{v_{A}} - P_{B} \frac{\overrightarrow{V_{B}}}{\overrightarrow{M_{B}}} \right]$$

$$= P_{A} \left[ P_{A} \frac{\overrightarrow{V_{A}}}{\overrightarrow{M_{A}}} \overrightarrow{v_{A}} + P_{B} \frac{\overrightarrow{V_{B}}}{\overrightarrow{M_{B}}} \overrightarrow{v_{A}} - P_{A} \frac{\overrightarrow{V_{A}}}{\overrightarrow{M_{A}}} \overrightarrow{v_{A}} - P_{B} \frac{\overrightarrow{V_{B}}}{\overrightarrow{M_{B}}} \right]$$

$$= P_{A} \left[ P_{A} \frac{\overrightarrow{V_{A}}}{\overrightarrow{M_{A}}} \overrightarrow{v_{A}} + P_{B} \frac{\overrightarrow{V_{B}}}{\overrightarrow{M_{B}}} \overrightarrow{v_{A}} - P_{A} \frac{\overrightarrow{V_{A}}}{\overrightarrow{M_{A}}} \overrightarrow{v_{A}} - P_{B} \frac{\overrightarrow{V_{B}}}{\overrightarrow{M_{B}}} \right]$$

$$= P_{A} \left[ P_{A} \frac{\overrightarrow{V_{A}}}{\overrightarrow{M_{A}}} \overrightarrow{v_{A}} + P_{B} \frac{\overrightarrow{V_{B}}}{\overrightarrow{M_{B}}} \overrightarrow{v_{A}} - P_{A} \frac{\overrightarrow{V_{A}}}{\overrightarrow{M_{A}}} \overrightarrow{v_{A}} - P_{B} \frac{\overrightarrow{V_{B}}}{\overrightarrow{M_{B}}} \right]$$

$$= P_{A} \left[ P_{A} \frac{\overrightarrow{V_{A}}}{\overrightarrow{M_{A}}} \overrightarrow{v_{A}} + P_{B} \frac{\overrightarrow{V_{A}}}{\overrightarrow{M_{A}}} \overrightarrow{v_{A}} - P_{A} \frac{\overrightarrow{V_{A}}}{\overrightarrow{M_{A}}} \overrightarrow{v_{A}} - P_{B} \frac{\overrightarrow{V_{A}}}{\overrightarrow{M_{A}}} \overrightarrow{v_{A}} \right]$$

$$= P_{A} \left[ P_{A} \frac{\overrightarrow{V_{A}}}{\overrightarrow{M_{A}}} \overrightarrow{v_{A}} - P_{A} \frac{\overrightarrow{V_{A}}}{\overrightarrow{M_{A}}} \overrightarrow{v_{A}} - P_{A} \frac{\overrightarrow{V_{A}}}{\overrightarrow{M_{A}}} \overrightarrow{v_{A}} \right]$$

$$= P_{A} \left[ P_{A} \frac{\overrightarrow{V_{A}}}{\overrightarrow{M_{A}}} \overrightarrow{v_{A}} - P_{A} \frac{\overrightarrow{V_{A}}}{\overrightarrow{M_{A}}} \overrightarrow{v_{A}} \right]$$

$$= P_{A} \left[ P_{A} \frac{\overrightarrow{V_{A}}}{\overrightarrow{M_{A}}} \overrightarrow{v_{A}} - P_{A} \frac{\overrightarrow{V_{A}}}{\overrightarrow{M_{A}}} \overrightarrow{v_{A}} \right]$$

$$\therefore \dot{j}_{A} = P \frac{\sqrt{b}}{M_{B}} \dot{j}_{A}$$

(B-i4)

Fick's first law of diffusion is commonly written

$$\dot{\theta}_{A} = -\rho D_{AB} \nabla \omega_{A} \qquad (B-15)$$

From Equation (B-6)

From Equation (B-9)
$$\nabla \omega_{\mathbf{A}} = \frac{1}{1 - 1}$$

$$\nabla \omega_{\mathbf{A}} = \frac{1}{\rho^2 \frac{\overline{V_B}}{M_B}} \nabla f_{\mathbf{A}}$$

Therefore, the following is obtained

and, by substitution from Equation (B-14), the following expression results:

$$\int_{A}^{\infty} = -D_{AB} \nabla A \qquad (B-16)$$

This last expression is more suitable, since it shows that the concentration gradient rather than the mass fraction gradient can be used as the "driving force for diffusion."

Utilization of the Preceding Expression in the Equation of Mass Transport With Chemical, Mechanical, and Thermal Equilibrium

The total material balance is

$$\frac{\partial \rho_{\lambda}}{\partial t} = -\nabla \cdot (\rho \frac{\overline{\nu}}{\nu}) \tag{B-17}$$

where  $\rho_i v_i$  represents the total mass flux due to each of the components

$$\begin{array}{ll}
P_{i}\vec{v}_{i} = P_{i}(\vec{v}_{i} - \vec{v}^{2}) + P_{i}\vec{v}^{2} \\
P_{i}\vec{v}_{i} = \vec{j}_{i}^{2} + P_{i}\vec{v}^{2} \\
\frac{\partial P_{i}}{\partial t} = \nabla \cdot \vec{j}_{i}^{2} + \nabla \cdot (P_{i}\vec{v}^{2}) \\
\nabla \cdot (P_{i}\vec{v}^{2}) = P_{i}(\nabla \cdot \vec{v}^{2}) + (\vec{v}^{2} \cdot \nabla)P_{i}
\end{array}$$
(B-18)

The equality  $\nabla \cdot \overrightarrow{v} = 0$  must be demonstrated. For this purpose,

Let  $\bigvee_{i} = \frac{\bigvee_{i}}{M_{i}}$ 

then

$$\sum P_i \hat{V}_i = 1 \tag{B19}$$

$$\sum \left( \hat{V}_{i} \frac{\partial \hat{I}_{i}}{\partial t} + \hat{I}_{i} \frac{\partial \hat{V}_{i}}{\partial t} \right) = 0$$

and

$$\frac{\partial \mathcal{R}}{\partial t} = - \nabla \cdot (\mathcal{R} \overrightarrow{v_i})$$

Equation (B-19) then becomes

$$\sum \left[ -\hat{V}_{i} \nabla \cdot (\hat{\rho}_{i} \cdot \hat{v}_{i}) + \hat{\rho}_{i} \frac{\partial \hat{V}_{i}}{\partial t} \right] = 0$$

$$\nabla \cdot (\rho \overrightarrow{v}) = \rho \cdot \nabla \cdot \overrightarrow{v} + (\overrightarrow{v} \cdot \nabla) \rho \cdot .$$

but

$$\sum \nabla \cdot (\rho \cdot \hat{\nabla} \cdot \vec{v}) = \nabla \cdot \vec{v}$$

and consequently

$$\nabla \cdot \vec{v}^{\circ} = \sum_{i} \left( \frac{\partial \vec{V}_{i}}{\partial t} + \vec{v}_{i} \cdot \nabla \vec{V}_{i} \right)$$
 (B-20)

Assuming that V are uniform and that there is no acceleration, it then follows that

$$\nabla \cdot \psi = 0 \tag{B-21}$$

It must be noticed that if in addition to the previous conditions, the pressure gradients are small, as would be the case for the motion through the pores of a bed particle,  $v^0$  is zero as shown in Reference D9.

# Application to the Fixed Bed Problem

Let

where v is the superficial velocity through the bed, and if v is independent of concentration, it can be considered to be uniform over the bed length. In this equation k is a unit vector in the z direction.

Then if  $\epsilon$  is the external void fraction in the bed, and considering mass transfer diffusion only.

$$\frac{\partial f_{i}}{\partial t} = -\nabla \cdot \hat{\mathbf{N}}_{\mathbf{A}} - (\hat{\mathbf{v}} \cdot \nabla) f_{\mathbf{A}}$$
 (B-22)

Using Equation (B-16)

$$\frac{\partial P_A}{\partial t} = -(v \cdot \nabla) P_A + D_{AB} \nabla P_A$$

Now let  $v^0=kv$  and  $D_{\mbox{AB}}\cong E$ , the diffusivity for both molecular and and eddy transport in the stream flowing in the external voids. Also, the concentration of mass A in the flowing stream will be denoted by C and that in the pores of the stationary bed by  $\overline{C}$ . The superficial motion is taken to occur in the z direction. The mass balance for the flowing stream then becomes

$$\epsilon \frac{\partial c}{\partial t} + (1 - \epsilon) \frac{\partial \overline{c}}{\partial \overline{c}} = -\nu \frac{\partial c}{\partial c} + \epsilon \frac{\partial c}{\partial c}$$

or

$$E \frac{\partial z}{\partial z} \cdot v \frac{\partial z}{\partial z} + \epsilon \frac{\partial c}{\partial \epsilon} + (1 - \epsilon) \frac{\partial \bar{c}}{\partial \epsilon}$$
(B-22)

Here it has been assumed that pore diffusion is the sole mode of disappearance of mass A from the flowing stream.

By virtue of the remarks following Equation (B-21) there is no convective velocity term for pore diffusion and Equation (4-19) of Section 4 applies.

The interfacial concentrations are related by

where w is obtained from the process occurring on the surfaces of the solid pores.

### APPENDIX C

RESULTS OF LABORATORY
ADSORPTION AND DESORPTION OF CO<sub>2</sub>
ON MOLECULAR SIEVE AND H<sub>2</sub>O
ON SILICA GEL



Equilibrium Isotherms of Carbon Dioxide Adsorption on Linde Type  $5A_{\mbox{\scriptsize J}}$  |/16 in. Diameter Pellets at  $25^{\mbox{\scriptsize O}}$ C Figure C-1.



Equilibrium and Non-Equilibrium Isotherms of Carbon Dioxide during Adsorption and Desorption on Linde Type 5A, 1/16 in. Diameter Pellets at  $0^{\circ}\text{C}$ Figure C-2.



Equilibrium and Non-Equilibrium Isotherms of Carbon Dioxide Adsorption and Desorption on Linde Type 5A, 1/16 in. Diameter Pellets at  $10.5^{\circ}\text{C}$ Figure C-3.



Equilibrium and Non-Equilibrium Isotherms of Carbon Dioxide Adsorption and Desorption on Linde Type  $5A_{\rm J}$  1/16 in. Diameter Pellets at  $50^{\rm o}C$ Figure C-4.

16.



Equilibrium and Non-Equilibrium Isotherms of Water Vapor Adsorption and Desorption on Linde Type 5A, 1/16 in. Diameter Pellets at  $25^{\circ}\mathrm{C}$ Figure C-5.



Figure C-6. Equilibrium and Nonequilibrium Isotherms of Water Vapor Adsorption and Desorption on Davison Type 05, 6-16 Mesh Silical Gel at 25°C



Figure C-7. Dynamic Adsorption of CO<sub>2</sub> on Linde Molecular Sieve, Type 5A, 1/16 in Diameter Pellets at 25°C





Figure C-8. Breakthrough of CO<sub>2</sub> from Linde Molecular Sieve, Type 5A, 1/16 in. Diameter Pellets at 25°C





Figure C-9. Dynamic Adsorption of CO<sub>2</sub> on Linde Molecular Sieve Type 5A, 1/16 in. Diameter Pellets at 25°C





Figure C-10. Breakthrough of CO<sub>2</sub> from Linde Molecular Sieve, Type 5A, 1/16 in. Diameter Pellets at 25°C





Figure C-II. Dynamic Adsorption of  ${\rm CO_2}$  on Linde Molecular Sleve Type 5A, I/I6 in. Diameter Pellets at  ${\rm O^0\,C}$ 



Figure C-12. Breakthrough of CO<sub>2</sub> from Linde Molecular Sieve, Type 5A, 1/16 in. Diameter Pellets at 0°C





Figure C-13. Dynamic Adsorption of  ${\rm CO_2}$  on Linde Molecular Sieve Type 5A, 1/16 in. Diameter Pellets at  $25^{\circ}{\rm C}$ 



Figure C-14. Breakthrough of CO<sub>2</sub> from Linde Molecular Sieve, Type 5A, 1/16 in. Diameter Pellets at 25°C





Figure C-15. Dynamic Adsorption of CO<sub>2</sub> on Linde Molecular Sieve Type 5A, 1/16 in. Diameter Pellets at 25°C



Figure C-16. Breakthrough of CO<sub>2</sub> from Linde Molecular Sleve, Type 5A, 1/16 in. Diameter Pellets at 25°C





Figure C-17. Dynamic Adsorption of CO<sub>2</sub> on Linde Molecular Sieve Type 5A, 1/16 in. Diameter Pellets at 25°C





Figure C-18. Breakthrough of CO<sub>2</sub> from Linde Molecular Sieve, Type 5A, 1/16 in. Diameter Pellets at 25°C





Figure C-19. Dynamic Adsorption of CO<sub>2</sub> on Linde Molecular Sieve Type 5A, 1/16 in. Diameter Pellets at O°C





Figure C-20. Breakthrough of CO<sub>2</sub> from Linde Molecular Sieve, Type 5A, 1/16 in. Diameter Pellets at 0°C





Figure C-21. Dynamic Adsorption of CO<sub>2</sub> on Linde Molecular Sieve Type 5A, 1/16 in Diameter Pellets at 25°C



Figure C-22. Breakthrough of CO<sub>2</sub> from Linde Molecular Sieve, Type 5A, 1/16 in. Diameter Pellets at 25°C





Figure C-23. Dynamic Adsorption of CO<sub>2</sub> on Linde Molecular Sieve Type 5A, 1/16 in. Diameter Pellets at 0°C





Figure C-24. Breakthrough of CO<sub>2</sub> from Linde Molecular Sieve, Type 5A, 1/16 in. Diameter Pellets at O<sup>0</sup>C





Figure C-25. Dynamic Adsorption of CO<sub>2</sub> on Linde Molecular Sieve Type 5A, 1/16 in. Diameter Pellets at 25°C



Figure C-26. Breakthrough of CO<sub>2</sub> from Linde Molecular Sieve, Type 5A, 1/16 in. Dlameter Pellets at 25°C





Dynamic Adsorption of CO<sub>2</sub> on Linde Molecular Sieve Type 5A, 1/16 in Diameter Pellets at  $25^{\circ}\mathrm{C}$ Figure C-27.



Breakthrough of CO2 from Linde Molecular Sieve, Type 5A 1/16 in. Diameter Pellets at 25°C Figure C-28.

GARRETT

AIRESEARCH MANUFACTURING DIVISION
Los Ángeles, California



Figure C-29. Dynamic Adsorption of CO<sub>2</sub> on Linde Molecular Sieve, Type 5A, 1/16 in Diameter Pellets at 50°C





Figure C-30. Breakthrough of CO<sub>2</sub> from Linde Molecular Sieve, Type 5A, 1/16 in. Diameter Pellets at 50°C



Figure C-31. Dynamic Adsorption of CO<sub>2</sub> on Linde Molecular Sieve Type 5A, 1/16 in. Diameter Pellets at 9.1°C



Figure C-32. Breakthrough of CO<sub>2</sub> from Linde Molecular Sleve, Type 5A, 1/16 in. Djameter Pellets at 9.1°C



Figure C-33. Dynamic Adsorption of CO<sub>2</sub> on Linda Molecular Sieve Type 5A, 1/16 in Diameter Pellats at 25°C



Figure C-34. Breakthrough of CO<sub>2</sub> from Linde Motecular Sieve, Type 5A, 1/16 in. Diameter Pellets at 25°C



Figure C-35. Dynamic Adsorption of CO<sub>2</sub> on Linde Molecular Sieve Type 5A, 1/16 in. Diameter Pellets at 50°C



Figure C-36. Breakthrough of CO<sub>2</sub> from Linde Molecular Sieve, Type 5A, 1/16 in. Diameter Pellets at 50°C





Figure C-37. Dynamic Adsorption of CO<sub>2</sub> on Linde Molecular Sieve Type 5A, 1/16 in. Diameter Pellets at O<sup>0</sup>C



Figure C-38. Breakthrough of CO<sub>2</sub> from Linde Melecular Sieve, Type 5A, 1/16 in. Diameter Pellets at O<sup>0</sup>C



Figure C-39. Dynamic Adsorption of  $\rm H_2O$  Vapor on Davison Silica Gel, Grade 05, 6-16 Mesh Granules at  $25^{\circ}\rm C$ 



Breakthrough of Water Vapor From Davison Silica Gel, Grade 05, 6-16 Mesh Granules at  $25^{\rm 0}{\rm C}$ Figure C-40.



A-22037

Figure C-41. Dynamic Adsorption of H<sub>2</sub>O Vapor on Davison Silica Gel Grade 05, 6-16 Mesh Granules at 15.56°C (60°F)

TIME, MIN





A-22038

Figure C-42. Breakthrough of Water Vapor From Davison Silica Gel, Grade O5, 6-16 Mesh Granules at 15.56°C (60°F)



PRESSURE, MICRONS





Vacuum Desorption of CO2 from Linde Molecular Sieve, Type 5A, 1/16 in. Diameter Pellets at  $50^{\circ}\text{C}$ Figure C-44.





Figure C-45. Vacuum Desorption of CO<sub>2</sub> from Linde Molecular Sieve, Type 5A, 1/16 in. Diameter Pellets at 50°C



orption of  $\rm CO_2$  from Linde Molecular Sieve, Type 5A, 1/16 in. Pellets at  $\rm 50^{0}C$  with Throttled Vacuum Vacuum Desorption of Diameter Figure C-46.



PRESSURE, MICRONS



Type 5A, 1/16 in. Diameter Pellets at 50°C



Vacuum Desorption of CO<sub>2</sub> from Linde Molecular Sieve, Type 5A, 1/16 in. Diameter Pellets at Ambient Adiabatic Conditions Figure C-48.

PRESSURE, MICRONS





Figure C-49. Vacuum Desorption of CO<sub>2</sub> from Linde Molecular Sieve, Type 5A, 1/16 in. Diameter Pellets at 25°C



Vacuum Desorption of CO<sub>2</sub> from Linde Molecular Sieve, Type 5A, 1/16 in. Diameter Pellets at 25°C with Throttled Vacuum Figure C-50.



Vacuum Desorption of CO2 from Linde Molecular Sieve, Type 5A, 1/16 in. Diameter Pellets at  $25^{\circ}\mathrm{C}$ Figure C-51.





PRESSURE, MICRONS



Vacuum Desorption of CO<sub>2</sub> from Linde Molecular Sieve, Type 5A, 1/16 in. Diameter Pellets at 25°C for 2 Min and 50°C for 28 Min

Figure C-52.



Figure C-53. Vacuum Desorption of  ${\rm CO_2}$  from Linde Molecular Sieve, Type 5A, 1/8 in. Diameter Pellets at  $25^{\circ}{\rm C}$ 



Figure C.54. Vacuum Desorption of H<sub>2</sub>O Vapor from Davison Silica GeJ, Grade 05, 6-16 Mesh Granules at  $25^{\circ}\mathrm{C}$ 



Gel, Vacuum Desorption of  $\rm H_2O$  Vapor from Davison Silica Grade 05, 6-16 Mesh Granules at  $50^{\circ}\rm C$ Figure C-55.





Grade 05, 6-16 Mesh Granules at 50°C at Throttled Vacuum Vacuum Desorption of H<sub>2</sub>O Vapor from Davison Silica Gel, Figure C-56.



Figure C-57. Vacuum Desorption of H<sub>2</sub>0 Vapor from Davison Silica Gel, Grade O5, 6-16 Mesh Granules at 50°C at Throttled Vacuum



Vacuum Desorption of H20 Vapor from Davison Silica Gel, Grade 05, 6-16 Mesh Granules at 38°C Figure C-58.



Vacuum Desorption of H<sub>2</sub>O Vapor from Davison Silica Gel, 67-1751 Grade 05, 6-16 Mesh Granules at Ambient Adiabatic Conditions Figure C-59.



Vacuum Desorption of  $\rm H_2O$  Vapor from Davison Silica Gel, Grade 05, 6-16 Mesh Granules at  $50^{\circ} \rm C$ Figure C-60.



Figure C-61. Vacuum Desorption of  $\rm H_2O$  Vapor from Davison Silica Gel, Grade 05, 3-8 Mesh Granules at  $50^{\rm o}{\rm C}$ 



PRESSURE, MICRONS



Vacuum Desorption of  $\rm H_2^0$  Vapor from Linde Type 5A, 1/16 in. Diameter Pellets at  $200^{\rm 0} \rm F$ 

Figure C-62.



Vacuum Desorption of  $\rm H_2O$  from Linde Molecular Sieve, Type 5A, 1/16 in. Diameter Pellets at 150°C Figure C-63.

PRESSURE, MICRONS



Figure C-64. Vacuum Desorption of HzO Vapor from Linds Type 5A, 1/16 in. Diameter Pellets at 100°C

PRESSURE, MICRONS





Vacuum Desorption of  $\rm H_2O$  Vapor from Linde Molecular Sieve, Type 5A, 1/16 in. Diameter Pellets at  $100^{\circ} C$  at Type 5A, 1/16 in. Throttled Vacuum Figure C-65.





of  $\rm H_2O$  Vapor from Linde Molecular Sieve, Diameter Pellets at  $100^{\circ} C$ Vacuum Desorption Type 5A, 1/16 in. Figure C-66.

AIRESEARCH MANUFACTURING DIVISION Los Ángeles, California



AIRESEARCH MANUFACTURING DIVISION Los Angeles, California

PRESSURE, MICRONS

Figure C-67.



Vacuum Desorption of H<sub>2</sub>O Vapor from Linde Molecular Sieve, Diameter Pellets at 100°C Type 5A, 1/16 in. Figure C-68.



Vacuum Desorption of H<sub>2</sub>O Vapor from Linde Molecular Sieve, Type 5A, 1/16 in. Diameter Pellets at 100°C, after a Dry N<sup>2</sup> Purge Figure C-69.

PRESSURE, MICRONS

Vacuum Desorption of  $\rm H_2O$  Vapor from Linde Molecular Sieve, Type 5A, 1/16 in. Diameter Pellets at  $100^{\circ} \rm C$  after a Dry N<sub>2</sub> Purge Figure C-70.

TIME, MIN

A-263 16





Figure C-71. Vacuum Desorption of  $H_2O$  Vapor from Linde Molecular Sieve, Type 5A, I/16 in. Diameter Pellets at  $100^{\circ}C$  after a Dry  $N_2$  Purge



## APPENDIX D

INPUT DATA FOR SIMULATING COMPOSITE BED DESCRIBED IN SECTION 8



```
GAR93
-A RUN 959960+079046+6+300
                                                                          CHWANG
-R ASG A=387 -
- XOT CUR
 IN A
TRI A
      FOR 59973.59973
      BLOCK DATA
      THESE ARE INPUT DATA TO ADSORB
      COMMON /HLOR2/ AHIDIAIL+ A1411+ AVC1411+CPG1411+RHOG1411+
     THXG[41] +HX5(41) +HXC(41) +DTF(41) +F(41) +C(41) +V5(2) +DV5(2) +DV5(2) +D
     251(2+41)+RHO5(2)+UG(41)+WM(2)+UC(41)+NDXM+PS(41)+RHO58(41)+DS(41)+
     3C51(41)+C52(41)+C1(21+41)+C2(21+41)+D1(21+41)+D2(41)+PC1(41)+PC2(4
     41) • PC3(41) • ASG(41) • ASX(41) • AGX(41) • C1P(41) • C2P(41) • C3P(41) • D1P(41)
     5.5FR(2.41);+PS(2)+NPX1+NPR4+DX+DT+GK(41)+DH(41)+SK(41)+P1(41)+P2(41)
     6.P3(41).W5(41).CR1(2.21).CR2(2.21).CR3(2.21).C3(21.441).B(21.441).
     70(2)+41)+CP1(41)+CP2(41)+X(41)+VOIDF(41)+TIME
     8.AXC(41).RHOC(41).CPC(41).T268.AVX(41).TKX(41).CPX(41).RHOX(41)
     9.NOG.PX(2.41).PCO21.PH2O1. GMR.GMW.TG1.PA.PT(41).CPS(41).HSG(41)
      COMMON /BLOK3/ W(2)+41)+TG(41)+TS(41)+TC(41)+TX(41)+CYCLE
      COMMON VBLOKEY NOYCLT
      COMMON /BLOKIC/ NPRINT+DTMAX
      COMMON /BLOK12/ NTEMP
      COMMON /BLOK13/ WI+ TI
      COMMON /BLOK16/ NDXMAC
      DATA WI, TI/ C.01, 2./
      DATA NOXMAC/ 14 /
      DATA PHOS / 64. + 75. /
      DATA WM / 44..18. /
      DATA RHOSE / 3*45.+14*36.0.1*45.+5*37.+18#0.0 /
      DATA W/ 861*1*E-6 /
      DATA TG. TS. TC. TX / 164*58. /
      DATA MPRINT. DIMAX/ 10. 0.005 /
      DATA NTEMP / 1 /
      DATA AVC / 18*0.055*521.18*0.0 /
      DATA GMR + GMW + PA / 10 . + 31 . + 259 . /
      DATA APED / 3*0.424.14*0.386.1*0.424.5*0.350.18*0.0 /
      DATA AVY / 3*0.0.14*220..1*0.0.5*328..18*0.0 /
     . DATA CPY / 41*0.11 /
      DATA RHOX / 41*490. /
      DATA HSG / 18*23.0.5*35.0.18*0.0 /
      DATA HXC / 18*0.0.5*180..18*0.0 /
      DATA HYS / 3*P.O.14*9.6.1*0.0.5*9.6.18*0.0 /
      DATA ASX / 3*0.0.14*28.2.1*0.0.5*40.2.18*0.0 /
      DATA AGX / 3*0.0.14*28.2.1*0.0.5*40.2.18*0.0 /
      DATA CPG / 41*0.23 /
      DATA NDXM+NPX1+NDR4+DX+DT / 18+23+4+0.0353+1.E-5 /
      A D.CA*IA \ OU ATAC
      DATA CPC / 41*0.75 /
      DATA RHOC / 41*67.0 /
      DATA T268 / 58. /
      PATA DH / 18#400. $5#1400. $18#0.0 /
      DATA PC021,PH201 / 7.0,10.0 /
      DATA DIF / 18#40.0E-6.5#1.E-5.18#0.0 /
      DATA CPS / 18#0.25.5#0.22.18#0.0 /
      DATA ASG /3*658..14*526..1*658..5*700..18*0.0/
      DATA TKX/ 0., 17*9.0, 0.45, 4*9.0, 18*0.0 /
```

```
DATA SK/ 41*0.100 /
DATA NOG / 17 /
DATA HXG / 3*0.0.14#66.0.1#0.0.5#95.0.18#0.0 /
DATA TGT / 58. /
DATA PHOX/ 3#49. 14#490. 44. 49. 23#490. /
DATA CYCLE / 0.333333333
DATA NCYCLT / 4 /
DATA GK/ 14#0.60E-4: 4#0.00: 5#0.2E-3: 18#0.0 /
END
FOR 59993. 59993
BLOCK DATA
INPUT DATA TO DESORB
COMMON /BLOK1/ ABED(41) + A(41) + AVC(41) + CPG(41) + RHOG(41) +
1HXG(4])+HXS(41)+HXC(41)+DIF(41)+F(41)+C(41)+VS(2)+DVS(2)+DVS(2)+R
251(2+41)*RHOS(2)*UG(41)*WM(2)*UC(41)*NOXM*PS(41)*RHOSB(41)*DS(41)*
3C51(41)+C52(41)+C1(21+41)+C2(21+41)+D1(21+41)+D2(41)+PC1(41)+PC2(4
41) .PC2(41) .ASG(4)) .ASX(4)) .ASX(4)) .CX(41) .C1P(41) .C2P(41) .C3P(41) .D1P(4) 5
5.FR(2.41).RS(2).NDX1.NDR4.DX.DT.GK(41).DH(41).SK(41).P1(41).P2(41)
6.P3(41).WS(41).CR1(2.21).CR2(2.21).CR3(2.21).C3(21.41).B(21.41).
70(21,41),CP1(41),CP2(41),X(41),VOIDF(41),TIME
8.AXC(41).RHOC(41).CPC(41).T268.AVX(41).TKX(41).CPX(41).RHOX(41)
9.NOG.PK(2.411.PC021.PH201. GMR.GMW.TGI.PA.PT(41:.CPS(411.HSG(41)
COMMON /BLOK4/ POUT(101+TIMET(101+NBCOUT
COMMON /BLOK13/ WI+ TI
COMMON /BLOK16/ NOXMAC
DOUBLE PRECISION CIP+C2P+C3P+D1P
DIMENSION AXS(41)+AXG(41)+AGS(41)+HSX(41)+HGX(41)+HGS(41)+ACX(41)+
1HCX (41)
FOUTVALENCE (ASX+AXS)+(AGX+AXG)+(ASG+AGS)+(HXS+HSX)+(HXG+HGX)+(HSG
1.HGS1.(AXC.ACX).(HXC.HCX)
DATA MINUS / 64** /5 . /
MATA WM / 44. TR. /
 PATA CPG / 41*0.23 /
 DATA HXS / 3#0.0.14#9.6.1#0.0.5#9.6.18#0.0 /
 DATA HXC / 18*0.0, 5*46.,18*0.0 /
 DATA NBCOUT / 1 /
 DATA ABED / 3*0.424.14*0.386.1*0.424.5*0.350.18*0.0 /
 DATA AVX / 3*0.0,14*220.01*0.0.5*328.018*0.0 /
 DATA TKX / 3*0.0.14*9.0.1*0.0.5*9.0.18*0.0 /
 DATA CPX / 41*0.11 /
 DATA PHOX / 41 8400. /
 DATA CPS / 18*0.25.5*0.22.18*0.0 /
 DATA RHOSB / 3*45.,14*34.2,1*45.,5*37.,18*0.0 /
 DATA ASG /3*658..14*526..1*658..5*700..18*0.0/
 DATA ASX / 3*0.0+14*28+2+1*0.0+5*40+2+18*0+0 /
 DATA AGX / 3*0.0.14*28.2.1*0.0.5*40.2.18*0.0 /
 DATA NDXM.NDX1.NDP4, DX.DT / 18.23.4.0.0353.1.E-5 /
 DATA DH / 18*400.5*1400.18*0.0 /
 DATA UC / 41*8.0 /
 DATA RHOC / 41*67.0 /
 DATA CPC / 41*0.75 /
 DATA T268 / 120. /
 DATA DIF / 18*40.0F-6.5*1.F-5.18*0.0 /
 DATA AVC / 18*0.0.5*521..18*0.0 /
 DATA HXG / 3*0.0,14*9.50,1*0.0,5*6.00,18*0.0 /
 DATA HSG / 18*3.02. 5#1.87. 18*0. /
```

-1

| 5,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DATA NOG / 19<br>DATA SK/ 41# 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 08 /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DATA RHOX/ 3#4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 17*9.0, 0.45, 4* 49., 14*490., 49. ,00E-4, 4*0.00, 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | · 23*490 · /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | o /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| - X01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 59960                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | e de la constante de la consta | e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and the second s |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | o o para de o cominção de <del>des</del> para de maio <del>quantidad para</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | en e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | , in the second  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and the second of the second o | and the second s |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| t all                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | • ••• •• •• •• •• •• •• •• •• •• •• ••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| in the second se |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S. Control of the second of th |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | an a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

APPENDIX E

EXAMPLE PRINTOUT DURING ADSORPTION PERIOD

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | The second secon |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TOTAL VOLUME OF M.S. BED =               | •2506 CH FT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| tan apply on the same and discounts and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TOTAL AT OF M.S. BED = 9.56              | ot LR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TOTAL VOLUME OF 5.6. BLD =               | .6177=01 CU FT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TOTAL AT OF 5.6. JEU = 2.2!              | 36 LB.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| **************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TOTAL WT OF ACTIVE V.S. BED              | = 7,416 Lis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ing and the second of the seco | en e |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

|             |                      |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | the comment of the comments of |                                                        |
|-------------|----------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
|             | 22 .0518<br>23 .0971 | 18 .0439           | .0513<br>.1963                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .0541<br>1008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ,0564<br>1045                                          |
|             | COS LOADING          | C35. *S.* Lt. Kelo |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .0277 LA/LB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                        |
| <b>1</b>    | AVG CO2              | SURP RATE          | .3396                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | La/4R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TIME AVS H20 ADSORP RATE = .2184 L3/HR                 |
| 1 -         | AVG EXI              | r PH20 =           | 26n3 M.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TIME AVS RATE OF M.S. POISONING BY HED =.5835-02 LB/HR |
|             |                      |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |
|             |                      |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |
|             |                      |                    | And and a second |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |
|             |                      |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |
|             |                      |                    | i en dente en indenten en e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T. T               |
|             |                      |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |
|             |                      |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |
| ol manon    |                      |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N AND THE PROPERTY OF THE P    |                                                        |
| entri de se |                      |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |
| ) MAN       |                      |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |
| 0           |                      |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |
|             |                      |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |
|             |                      |                    | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |
|             |                      |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |
|             |                      |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |
| 0           |                      |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |
| 0           |                      |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |

| Marian   M     |                                                       | PC02.ww<br>1.3436<br>1.95198<br>1.95198<br>2.6724<br>3.8286<br>4.2535<br>4.2535<br>4.2535<br>7.0000<br>7.0000<br>7.0000<br>7.0000<br>7.0000<br>7.0000<br>7.0000<br>7.0000<br>7.0000<br>7.0000<br>7.0000<br>7.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                               | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RBENI TEMP. 79.3026 80.0415 80.0415 80.8170 81.3044 81.3044 81.3044 81.3044 81.3044 81.3044 81.3044 81.3044 81.3044 81.3044 81.304 73.9194 73.9194 73.9194 73.9194 73.9194 73.9194 73.9194 73.9194 73.9194 73.9194 73.9195 73.9195 66.908 66.908 66.908 66.908 66.908 66.908 66.708 66.708 66.708                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ## CORF TEVP = 80.5082  ## 50.5088  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60.7068  ## 60. |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20 2 3 3 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5          | 1.3436<br>1.6194<br>1.9543<br>1.3469<br>1.3469<br>1.6724<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1.7024<br>1. |                                               | 44 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b 4 a b |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 000000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1 1.1194                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                 | 1.6194<br>1.9543<br>2.6724<br>2.6724<br>2.6724<br>2.4174<br>2.4174<br>2.4174<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.6000<br>2.60000<br>2.60000<br>2.60000<br>2.60000<br>2.60000<br>2.60000<br>2.60000<br>2.60000<br>2    |                                               | 2 4 6 2 4 4 5 5 4 4 6 4 6 4 6 4 6 4 6 4 6 4 6 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 88 8 6 6 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1.   1.   1.   1.   1.   1.   1.   1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                 | 2.3469 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.6724 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                               | 0 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 88 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1.   1.   1.   1.   1.   1.   1.   1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                 | 5.6724<br>5.6734<br>5.8286<br>5.82595<br>5.6173<br>5.6173<br>5.6173<br>5.6000<br>7.0000<br>7.0000<br>7.0000<br>7.0000<br>7.0000<br>7.0000<br>7.0000<br>7.0000<br>7.0000<br>7.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                               | 30,440,40,40,40,40,40,40,40,40,40,40,40,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 88 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 11. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                 | 14174<br>142545<br>142545<br>142546<br>142546<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156173<br>156 |                                               | 144044040404040444                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 111111111111111111111111111111111111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                 | 1.25.95<br>1.25.95<br>1.25.95<br>1.25.95<br>1.25.02.9<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | * : MA WANNANANANANANANANANANANANANANANANANAN | 200000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 88 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 11 5-153                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                 | 1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | * * **********************************        | 046420000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 88 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 220                                                   | 5.1563<br>5.6173<br>5.6173<br>5.5468<br>7.0000<br>7.0000<br>7.0000<br>7.0000<br>7.0000<br>7.0000<br>7.0000<br>7.0000<br>7.0000<br>7.0000<br>7.0000<br>7.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | * ************************************        | 40-00-00-00-0-0-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 0 0 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 12 5-6173 15659 77,79370 76,1339 1000 773 14,030 11,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000 773 15,000   | 12 12 12 14 13 15 15 15 15 15 15 15 15 15 15 15 15 15 | 5,6173<br>5,5428<br>5,5428<br>7,0000<br>7,0000<br>7,0000<br>7,0000<br>7,0000<br>7,0000<br>7,0000<br>7,0000<br>7,0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ~ * ************************                  | 24640894089<br>84640894089                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6448989898989898989898989898989898989898                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 00 F 01 H W D 3 B O B D D D F 01 H W D 3 B O B D D D M M M M M M M M M M M M M M M M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 14 6.5468 3569 77.5652 77.59194 0000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11.1000 77.5 11   | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                 | 2.5.5.6.8<br>7.0000<br>7.0000<br>7.0000<br>7.0000<br>7.0000<br>7.0000<br>7.0000<br>7.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | * HAH GONONON * *                             | N+0+01000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6274<br>6274<br>6274<br>6274<br>6274<br>6274<br>6274<br>6274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 88 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | V (1 4 4 0 4 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 15 7.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 15<br>16<br>18<br>19<br>20<br>20<br>22                | 7,0000<br>7,0000<br>7,0000<br>7,0000<br>7,0000<br>7,0000<br>7,0000<br>7,0000<br>7,00000<br>7,0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | # # # # # # # # # # # # # # # # # # #         | 246472894                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 44489889889889889889889889888888888888                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 88 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7 4 10 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 16 7.000n 1.5559 66.8189 60.9792 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 16<br>11<br>18<br>19<br>20<br>21<br>22                | 7,0000<br>7,0000<br>7,0000<br>7,0000<br>7,0000<br>7,0000<br>7,0000<br>7,0000<br>7,0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | * : HANDONONA                                 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 099999999999999999999999999999999999999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 10 0 2 10 0 0 0 0 0 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 18 7.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 25 C L 18                                             | 7.0000<br>7.0000<br>7.00000<br>7.00000<br>7.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | # # # # # # # # # # # # # # # # # # #         | N + 0 + 0 + 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4495<br>4495<br>4785<br>4785<br>657                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.340.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 19 7.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 22 22 22                                              | 7.0000<br>7.0000<br>7.0000<br>7.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | * - AND SO                                    | 0 to to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 495<br>723<br>657                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8.517<br>9.030<br>9.838<br>0.828                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2 0 0 CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 20 7.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20                                                    | 7.0000<br>7.0000<br>7.0000<br>7.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4 499                                         | 0 to t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 785<br>723<br>657                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8.515<br>9.030<br>0.838<br>0.828                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 23 7.0000 1.1,722 60.443 62.723 60.4523 60.4523 60.4523 60.4523 60.4523 60.4523 60.4523 60.4523 60.4523 60.4523 60.4523 60.4523 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.4525 60.452   | 21.                                                   | 7.0000<br>7.0000<br>7.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2 N N N N N N N N N N N N N N N N N N N       | 0 ± 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 723                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.828                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| SORRA AVG I 2 3 4 5 6 7 8 9 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 22                                                    | 7.0000<br>7.0000<br>FRIUR OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2 H 4                                         | , O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 657                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.922                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| SORR AVG 1 2 3 4 5 6 7 8 9  SORR AVG 1 2 3 4 5 6 7 8 9  AUDE AVG 1 2 3 4 5 6 7 8 9  AUDE AVG 1 2 3 4 5 6 7 8 9  AUDE AVG 1 0154 01143 01165  - 0155 0164 0154 0177 01169  - 0197 0116 0127 01169  - 0197 0116 0128 0224  - 0197 0197 0223 0224  - 0197 0223 0224  - 0197 0223 0224  - 0234 0223 0224  - 0236 0235 0246  - 0346 0235 0346  - 0356 0356 0347  - 0405 0000 0000 0000  - 0000 0000 0000 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10                                                    | ERIUR OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ,                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| AVE         AVG         1         2         3         4         5         6         7         8           AVE         AVG         1         2         3         4         5         6         7         8           AVG         1         2         3         4         5         6         7         8           AVG         1         3         1         3         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                               | Andrew Comments of the first of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | enter agrante de la companya de la c |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2 01141 01141 01143 01143 01144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NODE                                                  | >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Q.                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Z.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2 01141 01141 01157 0115<br>2 01155 01146 01154 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01157 01 |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4         0115         0116         0117         0118         0117         0118         0116         0200         0200         0200         0200         0200         0200         0200         0200         0200         0200         0200         0200         0200         0200         0200         0200         0200         0200         0200         0200         0200         0200         0200         0200         0200         0200         0200         0200         0200         0200         0200         0200         0200         0200         0200         0200         0200         0200         0200         0200         0200         0200         0200         0200         0200         0200         0200         0200         0200         0200         0200         0200         0200         0200         0200         0200         0200         0200         0200         0200         0200         0200         0200         0200         0200         0200         0200         0200         0200         0200         0200         0200         0200         0200         0200         0200         0200         0200         0200         0200         0200         0200         0200         0200         02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                     | 177                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                             | 410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - inglinger spirals one is a tenantical form against about the production of the fall of the contract of the c | . often designation while programme of the design of a standard programme of the standard progra |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4         .0197         .0184         .0196         .0209         .0209         .0209         .0219         .0219         .0219         .0219         .0238         .0219         .0238         .0229         .0239         .0229         .0259         .0259         .0259         .0259         .0259         .0259         .0259         .0259         .0259         .0259         .0259         .0259         .0259         .0259         .0259         .0259         .0259         .0259         .0259         .0259         .0259         .0259         .0259         .0259         .0259         .0259         .0259         .0259         .0259         .0259         .0259         .0259         .0259         .0259         .0259         .0259         .0259         .0259         .0259         .0259         .0259         .0259         .0259         .0259         .0259         .0259         .0259         .0259         .0259         .0259         .0259         .0259         .0259         .0259         .0259         .0259         .0259         .0259         .0259         .0259         .0259         .0259         .0259         .0259         .0259         .0259         .0259         .0259         .0259         .0259         .0259         .02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                       | 173                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                             | 017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | is the section of the | ade designatura yan seperi mpinasa wan dan ayo oo oo daa ta (a aa o cadadan daa waxawa dag) o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n de activate emplemente de servicione empletado de la companya del la companya de la companya d |
| 6 0234 0219 0225 0238 024<br>6 0224 0219 0255 0258 0260 0265<br>8 0286 0289 0279 0285 029<br>9 0336 0288 0345 0341 034<br>1 0336 0347 0335 0341 034<br>2 0405 0386 0447 0451 0451<br>2 0409 0000 0000 0000<br>6 0000 0000 0000 0000<br>7 0000 0000 0000 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                       | 261                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                               | .020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3         0256         0240         0255         0260         0250         0250         0255         0279         0265         0279         0265         0279         0265         0279         0279         0236         0231         0234         0234         0234         0234         0234         0234         0234         0234         0234         0234         0234         0234         0234         0234         0234         0234         0234         0234         0234         0234         0234         0234         0234         0234         0234         0234         0234         0234         0234         0241         0241         0241         0241         0241         0241         0241         0241         0241         0241         0241         0241         0241         0241         0241         0241         0241         0241         0241         0241         0241         0241         0241         0241         0241         0241         0242         0242         0242         0242         0247         0247         0247         0247         0247         0247         0247         0247         0247         0247         0247         0247         0247         0247         02447         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                       | 234 .0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                               | .024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       | 256                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                               | -026                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | river and the same of the same | The second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0 0336 0317 0335 0341 034  1 0405 0349 0404 0411 041  2 0405 0427 0496 0403 0403  4 0497 0477 0496 0500  5 0000 0000 0000 0000  7 0000 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •                                                     | 280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | معمور بالهاميات المهائي ويوميا والسابع فيسابع والإسابان والمارية                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2 0040 00404 00404 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411 00411   |                                                       | 336                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                               | 4EO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4 0497 0497 0496 0500<br>4 0497 0497 0496 0500<br>5 0000 0000 0000 0000<br>6 0000 0000 0000 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                       | 969                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                               | .041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Andrew Communication of the American State of Management of the Communication of the Communic | e activismos de la calagión a . seu entidad de partir partir de la calagión de la calagión de la calagión de l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       | 874                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                               | 5 70 4 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | The second secon |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •                                                     | . 764                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                               | 050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | The second secon |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7,0000,0000,0000,0000,0000,0000,0000,0000,0000,0000,0000,0000,0000,0000,0000,0000,0000,0000,0000,0000,00000,00000,00000,00000,00000,00000,00000,00000,00000,00000,00000,00000,00000,00000,00000,00000,00000,00000,00000,00000,00000,00000,00000,00000,00000,00000,00000,00000,00000,00000,00000,00000,000000,00000,00000,00000,00000,00000,00000,00000,00000,00000,00000,00000,00000,00000,00000,00000,00000,00000,00000,000000,00000,00000,00000,00000,00000,00000,00000,00000,00000,00000,00000,00000,00000,00000,00000,00000,00000,00000,00000,00000,00000,00000,00000,00000,00000,00000,00000,00000,00000,00000,00000,000000,00000,00000,00000,00000,00000,00000,00000,00000,00000,00000,00000,00000,00000,00000,00000,00000,00000,00000,000000,00000,00000,00000,00000,00000,00000,00000,00000,00000,00000,00000,00000,00000,00000,00000,00000,00000,00000,00000,00000,00000,00000,00000,00000,00000,00000,00000,00000,00000,00000,00000,000000,00000,00000,00000,00000,00000,00000,00000,00000,00000,00000,00000,00000,00000,00000,00000,00000,00000,00000,000000,00000,00000,00000,00000,00000,00000,00000,00000,00000,00000,00000,00000,00000,00000,00000,00000,00000,00000,00000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                       | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                               | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 8 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .000   | )•                                                    | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                               | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0 .0132 .0109 .0130 .0138 .014<br>1 .0266 .0222 .0263 .0278 .029                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •                                                     | 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                               | 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <u>1</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                     | 132                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                               | 014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                       | 266                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                               | 640                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A TO THE PROPERTY OF THE PROPE |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

APPENDIX F

EXAMPLE PRINTOUT DURING DESORPTION PERIOD

| AXIAL MODE  2 2 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 7957<br>7957<br>7957<br>7957<br>7834<br>7746<br>7746<br>7746<br>7651<br>7651<br>7653<br>6859<br>6859<br>6859<br>6859<br>6859<br>6859<br>7442<br>7442<br>7442<br>7442<br>7442<br>7442<br>7442<br>744 | 79.6119 79.6119 79.6119 79.6119 72.7350 71.2344 70.2380 68.5139 68.5139 68.6576 68.6576 66.6576 66.6576 66.6576 66.6576 66.6576 67.2854 68.5139 66.050 67.2854 68.5139 68.5139 68.5139 68.5139 100.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 110.2809 1 | 73.6119<br>73.6119<br>72.7945<br>72.7945<br>71.9633<br>71.9633<br>71.9633<br>71.9633<br>69.4259<br>66.8935<br>66.8935<br>66.8935<br>66.8935<br>66.8935<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.2529<br>70.252 | <br>72,4658<br>72,4599<br>72,4299<br>71,2696<br>70,4877<br>69,6348<br>67,9872<br>67,9872<br>67,9872<br>67,9872<br>67,9872<br>67,9872<br>67,9872<br>67,9872<br>67,9872<br>67,9872<br>67,9872<br>67,9872<br>67,9872<br>67,9872<br>67,9872<br>67,9872<br>67,9872<br>67,9872<br>67,9872<br>67,9872<br>67,9872<br>67,9872<br>69,6348<br>71,9176<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73,7951<br>73, |       |
|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 18<br>19<br>20<br>21<br>22<br>22                    | 1.000000<br>1.055047<br>1.055788<br>3.333492<br>5.530498                                                                                                                                            | .002720<br>.002720<br>.002720<br>.002720                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | . 000178<br>. 00054<br>. 00054<br>. 000134<br>. 001311                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 02372 |



| NOTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        | 4 000000000000000000000                                                                     | 01158<br>01158<br>01158<br>01158<br>01158<br>01158<br>01158<br>01158<br>01158<br>01158<br>01158<br>01158<br>01158<br>01158<br>01158<br>01158<br>01158<br>01158<br>01158<br>01158<br>01158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ######################################                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0152<br>0155<br>0161<br>0171<br>0171<br>0177<br>0177<br>0177<br>0179<br>0179<br>017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | a BE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1014 1015 1015 1015 1015 1015 1015 1015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        | 0154<br>0154<br>0157<br>0157<br>0178<br>0188<br>0188<br>0188<br>0188<br>0188<br>0188<br>018 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2 2 010.0 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 010.5 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0155<br>0155<br>0157<br>0177<br>0177<br>0177<br>0179<br>0179<br>0179<br>0179<br>017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | a BEO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 87/87 n600°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1017 (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) (115) ( |        |                                                                                             | 000000<br>000000<br>000000<br>000000<br>000000<br>00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0157<br>0157<br>01174<br>01174<br>01176<br>01176<br>01185<br>01185<br>01185<br>01186<br>01186<br>01186<br>01186<br>01186<br>01186<br>01186<br>01187<br>01186<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01187<br>01 | 4040404040404040404040404040404040404040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0152<br>0151<br>0174<br>0174<br>0177<br>0177<br>0177<br>0179<br>0179<br>0179<br>0179<br>0173<br>0173<br>0000<br>0000<br>0000<br>0000<br>0005<br>0005<br>0005<br>00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | a BED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | #600°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.00164 0.0154 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0 |        |                                                                                             | 011658<br>011658<br>011658<br>011658<br>011658<br>011658<br>011658<br>011658<br>011658<br>011658<br>011658<br>011658<br>011658<br>011658<br>011658<br>011658                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4646464646464646464646464646464646464646                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0155<br>0171<br>0171<br>0171<br>0177<br>0177<br>0179<br>0179<br>0179                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | a BE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 87/87 #600°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |                                                                                             | 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174     | 400000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0174<br>0174<br>0177<br>0177<br>0183<br>0183<br>0183<br>0173<br>0173<br>0000<br>0000<br>0000<br>0000<br>00055<br>0013<br>0095                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | • aEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 87/87 n600°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1017 - 01140 - 0175 - 0177 - 0177 - 0177 - 0177 - 0177 - 0178 - 0177 - 0178 - 0177 - 0178 - 0177 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0188 - 0 |        |                                                                                             | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20176<br>20178<br>20178<br>20183<br>20184<br>20184<br>20184<br>20184<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186<br>20186     | AH AH AH AH AH OO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0174<br>0177<br>0177<br>0179<br>0183<br>0183<br>0183<br>0173<br>0000<br>0000<br>0000<br>0013<br>0005<br>0005<br>0005<br>000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | a BEO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | *000* LB/LB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10182 - 0.165 - 0.149 - 0.177 - 0.189 - 0.177 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189 - 0.189  |        |                                                                                             | 00168<br>00168<br>00168<br>00168<br>00169<br>00169<br>0000<br>0000<br>0000<br>0000<br>0000<br>00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 01183<br>01183<br>01185<br>01185<br>01186<br>01186<br>01186<br>01186<br>01186<br>01186<br>01186<br>01186<br>01186<br>01186<br>01186<br>01186<br>01186<br>01186                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 444444444444444444444444444444444444444                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0177<br>0184<br>0184<br>0193<br>0193<br>0173<br>0173<br>0000<br>0000<br>0000<br>0013<br>0013<br>001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | a BEO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 87/87 n600°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1018 2019 1118 1118 1118 1118 1118 1118 1118 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |                                                                                             | 01091<br>01191<br>01191<br>01191<br>01000<br>00000<br>00000<br>00000<br>00000<br>00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1183<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>01189<br>0189<br>0                                                                                            | 444440000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 01173<br>01193<br>01193<br>01193<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>01173<br>0173<br>0 | a BEO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 87/87 n600°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10184 - 0197 - 0149 - 0144 - 01184 - 01184 - 01184 - 01184 - 01184 - 01184 - 01184 - 01184 - 01184 - 01184 - 01184 - 01184 - 01184 - 01184 - 01185 - 01197 - 01184 - 01184 - 01185 - 01197 - 01184 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 01197 - 0 |        |                                                                                             | 01197<br>01197<br>01197<br>01197<br>01197<br>01175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 01149<br>01149<br>01149<br>01149<br>01149<br>01149<br>01149<br>01149<br>01149<br>01149<br>01149<br>01149<br>01149                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 000000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0183<br>01793<br>0173<br>0173<br>0000<br>0000<br>0000<br>00025<br>00025<br>0005<br>0005<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | a BE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 87/87 n600°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |                                                                                             | 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 00148<br>01179<br>01179<br>0000<br>0000<br>0000<br>0000<br>0000<br>00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 000000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 01193<br>01173<br>01173<br>00100<br>00000<br>00000<br>00025<br>00025<br>00095                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | a BEO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 87/87 n600°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10145 - 1015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |                                                                                             | 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 00146<br>00179<br>0000<br>00000<br>00000<br>00000<br>00003<br>00003<br>00124<br>00124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 440000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 01173<br>00173<br>0000<br>0000<br>0000<br>0000<br>0013<br>00055<br>0191<br>AVS H20 L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | a BEO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 87/87 #600°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0000 0000 0000 0000 0000 0000 0000 0000 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |                                                                                             | 4 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 460606060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0000<br>0000<br>0000<br>0000<br>00013<br>00025<br>00095<br>00095                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | · aEo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 87/87 #600°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0000 0000 0000 0000 0000 0000 0000 0000 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |                                                                                             | 4148<br>4148<br>4148<br>4148<br>4148<br>4148<br>4148<br>4148                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 00000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .0000<br>.0000<br>.0000<br>.0014<br>.0014<br>.0058<br>.0107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .0000<br>.0000<br>.0013<br>.0025<br>.0095<br>.0095<br>.0191                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | • BED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 87/87 #600°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0001 .0001 .0001 .0001 .0001 .0001 .0001 .0001 .0001 .0001 .0001 .0002 .0003 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 . |        | .0000<br>.0000<br>.00015<br>.0031<br>.0122                                                  | 0000<br>0000<br>0000<br>00043<br>00043<br>00175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 600000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .0000<br>.0000<br>.00014<br>.0028<br>.0058<br>.0107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .0000<br>.0000<br>.0000<br>.0005<br>.0005<br>.0191                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | . BED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 87/87 #600°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0000 0000 0000 0000 0000 0000 0000 0000 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        | 00010<br>00011<br>00052<br>00122<br>00122                                                   | 00021<br>00043<br>0175<br>0344                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 86666                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .0014<br>.0028<br>.0055<br>.0107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 00013<br>00050<br>00050<br>00095<br>0191                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 985                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 87/R7 #600°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0031 .0031 .0023 .0025 .0025 .0031 .0031 .0032 .0032 .0037 .0039 .0035 .0037 .0035 .0035 .0037 .0035 .0035 .0037 .0035 .0037 .0035 .0037 .0035 .0037 .0035 .0037 .0035 .0037 .0037 .0035 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 .0037 . |        | .0031<br>.0062<br>.0122<br>.0237                                                            | 0043<br>0087<br>0175<br>0344                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .0028<br>.0055<br>.0107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .0025<br>.0050<br>.0095<br>.0191<br>AVG H2D L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | . 8£3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 87/R7 #600°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 00052 .00057 .00057 .00050 .00050 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00052 .00 |        | .0122<br>.0122<br>.0237                                                                     | 00087<br>0175<br>0344                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .0055<br>.0107<br>.0207                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .0095<br>.0095<br>.0191<br>.AVG H2D L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | BEO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 87/87 n600°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (0401146-114-45,457) = .0149 LB/LB AVS H20 L0401146-114 S.6. BED = .00994 LB/LB  CO2 DESORP RATE = .2253 LB/HR TIVE AVG H20 DESORP RATE = .2034 LB/HR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        | +0237                                                                                       | .0344                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .0207                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .0191<br>AVS H20 L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | . BED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | *000 TB/FB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| COP DESORP RATE = .2583 LB/LR TIVE AVG H20 DESORP RATE = .2034 LB/LB  COP DESORP RATE = .2583 LB/HR  TIVE AVG H20 DESORP RATE = .2034 LB/LR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        | Const. of Children or other party of the Const.                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AVS H2D L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 950                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 97/87 n600*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | The second secon |
| ME AVE COP DESORP RATE = .2253 L974R TIME AVE H20 DESORP RATE = .2034 LB/HR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | , co   | OADING                                                                                      | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | è                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| IME AVG COD DESORP RATE = .2053 LB/HR TIME AVG HZD DESORY RATE = .4034 L0/HR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |                                                                                             | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | and the second s |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IME AV | 02 DE                                                                                       | RATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | . 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | /#R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | טבאטאי אאוני וו                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | £03+ F0/U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | en de la companya de  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                             | Name of the last o |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Andre province of a describent of the second |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A STATE OF THE PROPERTY OF THE                                                                                                                                                                                                                                                                            | e e e e e e e e e e e e e e e e e e e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | e e e e e e e e e e e e e e e e e e e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | on a contract of the second seconds in the second s |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | -                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Market and the second s |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and the second of the second o |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n denny series de la destaction de la destaction de la destaction de la company de la company de la company de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |



APPENDIX G

SOURCE PROGRAM LISTING

| • |                  | N 959960,079046,2,100 GAR93 K C HWANG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1               |
|---|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
|   |                  | G 8=387                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>†</b> .      |
|   | - XQT            | CUR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u> </u>        |
|   | IN B             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1               |
|   | TRI              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.              |
|   | <u>-1</u>        | FOR \$9960 \$9960                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u> </u>        |
|   | C                | MAIN PROGRAM FOR COMBINED ADSORPTION/DESORPTION PROGRAM DEVELOPED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1               |
|   | C                | BY K C HWANG+ AIRESEARCH • LOS ANGELES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 .             |
|   | C                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1               |
|   |                  | COMMON /BLOK3/ W(21,41),TG(41),TG(41),TC(41),TX(41),CYCLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 .             |
|   |                  | COMMON /BLOK6/ NCYCLT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1               |
|   | 4 170 5791       | COMMON /BLOK14/ NCYCLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ī               |
|   |                  | NCYCLE#1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1               |
|   | 11               | CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | î               |
| • | 1,1              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1               |
|   |                  | WRITE (6,300)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | - <del></del>   |
|   |                  | CALL MADSOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1               |
|   |                  | WRITE (6:400)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ī               |
|   | ar danger on the | CALL MDESOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1               |
|   |                  | NCYCLE=NCYCLE+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1               |
|   |                  | IF(NCYCLE .LE. NCYCLT) GO TO 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1               |
|   |                  | CALL EXIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1               |
|   | 300              | FORMAT(24H1 START ADSORPTION CYCLE )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1               |
|   | -                | FORMAT(24H1 START DESORPTION CYCLE )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1               |
|   |                  | END                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1               |
|   | ·c               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1               |
|   | č                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ī               |
|   | _1               | FOR \$9950, \$9950                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ī               |
|   | - I ,            | The second secon | · <del>† </del> |
|   |                  | CALL MADSOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1               |
|   |                  | END                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ť               |
|   |                  | FOR S9951 • S9951                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |
|   |                  | CALL MDESOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1               |
|   |                  | END                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1               |
|   | - I              | FOR S9970 • S9970                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1               |
|   |                  | SUBROUTINE MADSOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1               |
|   | C                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1               |
|   | -                | COMMON /BLOK2/ ABED(41), A(41), AVC(41), CPG(41), RHOG(41),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1               |
|   |                  | 1HXG(41) *HXS(41) *HXC(41) *P[F(41) *F(41) *C(41) *VS(2) *DVS(2) *DVS(2) *PVS(2) *R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1               |
|   |                  | 251(2+41)+RHOS(2)+UG(41)+WM(2)+UC(41)+NDXM+PS(41)+RHOSB(41)+DS(41)+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | i               |
|   |                  | 3CS1(41) • CS2(41) • C1(21 • 41) • C2(21 • 41) • D1(21 • 41) • D2(41) • PC1(41) • PC2(4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | i               |
|   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1               |
|   |                  | 41) •PC3(41) •ASG(41) •ASX(41) •AGX(41) •C1P(41) •C2P(41) •C3P(41) •D1P(41)  5 • CP(2) • A 1 • PS(2) • APX • APX • DX • DX • CX(41) • DX(41) • SX(41) • P3(41) • P3(41)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1               |
|   |                  | 5+FR(2+41)+RS(2)+NDX1+NDR4+DX+DT+GK(41)+DH(41)+SK(41)+P1(41)+P2(41)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1               |
|   | •                | 6.P3(41).W5(41).CR1(2.21).CR2(2.21).CR3(2.21).C3(21.41).B(21.41).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1               |
|   |                  | 70(21,41),CP1(41),CP2(41),X(41),VOIDF(41),TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1               |
|   |                  | 8 • AXC(41) • RHOC(41) • CPC(41) • T268 • AVX(41) • TKX(41) • CPX(41) • RHOX(41)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1               |
|   |                  | 9,NOG.PK(2,41),PCO21,PH201, GMR,GMW,TG1,PA,PT(41),CPS(41),HSG(41)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1               |
|   |                  | COMMON /BLOK3/ W(21,41),TG(41),TG(41),TC(41),TX(41),CYCLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1               |
|   |                  | COMMON /BLOK8/ DTO.TS1(41).TS2(41).TX1(41).TX2(41).TC1(41).TC2(41)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1               |
|   |                  | COMMON /BLOKIO/ NPRINT,DTMAX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1               |
|   |                  | COMMON /BLOK11/ TOTCO2+TOTH20+SUMPTM+WTACMS+WTSG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1               |
|   |                  | COMMON /BLOK13/ WI + TI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1               |
|   |                  | COMMON /BLOK14/ NCYCLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1               |
| • |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1               |
|   | _                | COMMON /BLOK16/ NDXMAC+ PCO2C+ VOLCAB+ RCO2C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1               |
|   | C                | SUMPTW-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1               |
|   |                  | SUMPTM=0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |
|   |                  | N1=NDXM+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1               |
|   |                  | VMS = 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1               |
|   |                  | WTMS=0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1               |
|   | , .              | VSG=0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1               |
|   | *                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |

```
WTSG=0.0
    DO 10 N= 1 . NDXM
    VMS=VMS+DX*ABED(N)
    WTMS=WTMS+DX#ABED(N) #RHOSB(N)
 10 CONTINUE
    DO 30 N= N1+NDX1
    VSG=VSG+DX*ABED(N)
    WTSG=WTSG+DX#ABED(N)#RHOSB(N)
 30 CONTINUE
    WRITE(6.500) VMS. WTMS. VSG. WTSG
500 FORMAT( 28HITOTAL VOLUME OF M.S. BED = G10.4.2X.5HCU FT//
123H TOTAL WT OF M.S. BED = G10.4.2X.5HCU FT//
228H TOTAL VOLUME OF S.G. BED = G10.4.2X.5HCU FT//
   323H TOTAL WT OF S.G. BED = G10.4. 2X.2HLB)
    WTACMS=0.0
    DO 70 N= 1. NDXMAC
 70 WTACMS=WTACMS + DX*ABED(N)*RHOSB(N)
WRITE(6,501) WTACMS
501 FORMAT( / 30H TOTAL WT OF ACTIVE M.S. BED = , G10.4.3H LB )
     TIME = 0.0
     DT = 1 \cdot E - 5
     DTO =0.0
     TOTC02=0.0
     TOTH20=0.0
     DO 20 N=1+NDX1
     TSI(N) = TS(N)
     TS2(N) = TS(N)
     TX1(N)=TX(N)
     TX2(N)=TX(N)
     TC1(N)=TC(N)
     TC2(N)=TC(N)
  20 CONTINUE
     CALL STARTA
     NPR=NPRINT - 1
     GO TO 3
   2 CALL PRADSB
     NPR = 0
   4 CONTINUE
     IF ( TIME .GE. CYCLE) CALL PRADSB
     IF( TIME .GE. CYCLE) GO TO 9999
     ADT=DTMAX
     DO 60 N=1.NDX1
                  /(ABS(W(NDR4+N)-WS(N))+1+E-9)*DT
     ADT2=WI
      IF(ADT2.LT. ADT) ADT=ADT2
      ADT2=T1/(ABS(TS1(N)-TS2(N))+1.E-9)*DT
      IF(ADT2.LT. ADT) ADT=ADT2
      ADT2=T1/(ABS(TX1(N)-TX2(N))+1.E-9)*DT
      IF(ADT2.LT. ADT) ADT ADT ADT2
  60 CONTINUE
      DTO=DT
      DT=ADT
    3 CONTINUE
      IF((TIME+DT) .GT. CYCLE) DT = CYCLE-TIME
PCO21 = PCO2C
      CALL ADSORBIDT)
      DPCO2C = DT#(RCO2C - GMR*
                          (PCO21-PK(1+1))*44+/(PA+GMW))*554+*530+/(44+*
     2VOLCAB1
```

|     | PCO2C= PCO2C+DPCO2C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                          |                                       |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
|     | TOTCO2=TOTCO2+GMR*DT*(PCO21-PK(1+1))*44./(PA*GMW)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                          |                                       |
|     | TOTH20=TOTH20+GMR*DT*(PH201-PK(2+1))*18./(PA*GMW)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                          |                                       |
|     | SUMPTM= SUMPTM+PK(2+1)*DT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                          |                                       |
|     | DO 21 N=1+NDX1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | · · · · · · · · · · · · · · · · · · ·                                                                                      |                                       |
| •   | The state of the s | •                                                                                                                          |                                       |
|     | TS2(N)=TS1(N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <u> </u>                                                                                                                   |                                       |
|     | TS1(N)=TS(N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                          |                                       |
|     | TX2(N)=TX1(N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>1</b>                                                                                                                   |                                       |
|     | TX1(N) = TX(N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                            |                                       |
|     | TC2(N)=TC1(N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                          |                                       |
|     | TC1(N)=TC(N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                          |                                       |
| 2.  | 21 CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                            |                                       |
|     | TIME = TIME + DT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                          |                                       |
|     | NPR = NPR+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | i                                                                                                                          |                                       |
|     | IF (NPR .GE. NPRINT) GO TO 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ī                                                                                                                          |                                       |
|     | GO TO 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                            |                                       |
|     | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                                                                                                                          |                                       |
| 999 | 99 CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                            |                                       |
|     | RETURN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                            | <del></del>                           |
|     | END                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                          |                                       |
| C ' |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · · · · · · · · · · · · · · · · · · ·                                                                                      |                                       |
| C   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                          |                                       |
| -1  | FOR \$9978,\$9978                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .1                                                                                                                         |                                       |
|     | SUBROUTINE STARTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                          |                                       |
| Ċ   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·                                                                                                                          |                                       |
|     | COMMON /BLOK2/ ABED(41), A(41), AVC(41), CPG(41), RHO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6(411)                                                                                                                     | · · · · · · · · · · · · · · · · · · · |
|     | 1HXG(41) *HXS(41) *HXC(41) *DIF(41) *F(41) *C(41) *VS(2) *D'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                            |                                       |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                            |                                       |
|     | 251(2.41) • RHOS(21 • UG(41) • WM(2) • UC(41) • NDXM • PS(41) • RHO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                            |                                       |
|     | 3C51(41),C52(41),C1(21,41),C2(21,41),D1(21,41),D2(41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                            |                                       |
|     | 41),PC3(41),ASG(41),ASX(41),AGX(41),C1P(41),C2P(41),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                            |                                       |
|     | _5.FR(2,41).RS(2).NDX1.NDR4.DX.DT.GK(41).DH(41).SK(41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ) •P1(41) •P2(41) 1                                                                                                        | · · · · · · · · · · · · · · · · · · · |
| •   | 6.P3(41).WS(41).CR1(2.21).CR2(2.21).CR3(2.21).C3(21.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 41) •B(21 • 41) • 1                                                                                                        |                                       |
|     | 7Q(21,41),CP1(41),CP2(41),X(41),VOIDF(41),TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                          |                                       |
|     | 8+AXC(41)+RHOC(41)+CPC(41)+T268+AVX(41)+TKX(41)+CPX(4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 41)+RHOX(41)                                                                                                               |                                       |
|     | 9:NOG.PK(2:41).PCO21.PH201. GMR.GMW.TG1.PA.PT(41).C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                            |                                       |
|     | COMMON /BLOK3/ W(21.41).TG(41).TS(41).TC(41).TX(41)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                            |                                       |
|     | DO 115 N=1 • NDX1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                          |                                       |
| 11  | 15 A(N)= GMR/ABED(N)/PA/GMW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •                                                                                                                          |                                       |
|     | 15 ATMIT OMRIADEDINITERATORIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | • • • • • • • • • • • • • • • • • • •                                                                                      |                                       |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                            |                                       |
|     | bolls buscolered in the Clark College                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                            |                                       |
|     | RS(1)=RHOSB(1)*3./RHOS(1)/ASG(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | · · · · · · · · · · · · · · · · · · ·                                                                                      | •                                     |
|     | RS(2)=RHOSB(NDX1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                            |                                       |
|     | 1 *3./RHOS(21/ASG(NDX1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                            |                                       |
|     | NDR=NDR4-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                            |                                       |
|     | NDR2=2.**NDR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | · 1                                                                                                                        |                                       |
|     | NDR3=NDR2+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                            |                                       |
|     | DO 10 I=1,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •                                                                                                                          |                                       |
|     | VS(I)=4./3.*3.1416*RS(I)**3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>.</b>                                                                                                                   |                                       |
|     | DVS(1)=VS(1)/NDR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                                                                                                                          |                                       |
|     | DVS1(1)*DVS(1)/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u> </u>                                                                                                                   | <del></del>                           |
|     | RS1(I+1)=0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                            | •                                     |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                            |                                       |
|     | DO 10 K=2+NDR3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                            |                                       |
| 1   | 10 RS1(I+K)=CBRT(3+/4+/3+1416*(4+/3+*3+1416*RS1(I+K-1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ##3+UV51(()))                                                                                                              | l                                     |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                            |                                       |
|     | en la companya de la<br>La companya de la co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | apan ka <u>unggan angganggan an ang ananggan katalanggan ang kanagan panggan katalang anggan katalang an</u> matalang at s |                                       |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                            |                                       |



168

|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1   |                |
|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----------------|
|                                         | DO 11 I=1.2<br>IF(I.EQ.1) DIF1=DIF(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |                |
|                                         | If (ledd) Diriability                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | )   | <u> </u>       |
|                                         | IF (I.EQ. 2) DIF1=DIF(NDX1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ]   | <u>l</u>       |
|                                         | CR1(1+1)=DVS1(1)*RHOS(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ţ   | 1              |
|                                         | CR2(I+1)=0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | · * | i ·            |
|                                         | CR3(I+1) = 4.*3.1416*RS1(I+2) = 2*DIF1 /(RS1(I+3) - RS1(I+1)) = RHOS(I)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     | <del>t</del>   |
| *************************************** | DO 11 K=2.NDR4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | :   |                |
|                                         | CO.11 KI-DVC/114RHOS/11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |                |
|                                         | CR2(I+K)=4+*3+1416*R51(I+2*K-2)**2*DIF1 /(R51(I+2*K-1)-R51(I+2*K-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     | <u> </u>       |
|                                         | **************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     | 1              |
|                                         | 13))*RHOS(I) 11 CR3(I*K)=4**3*1416*RS1(I*2*K)**2*DIF1 /(RS1(I*2*K+1)-RS1(I*2*K-1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     | 1              |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | 1              |
|                                         | 1)*RHOS(I)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 100 | 1              |
|                                         | CR1(1,NDR4)=CR1(1,1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     | · •            |
|                                         | CR1(2+NDR4)=CR1(2+1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     | i ·            |
|                                         | RETURN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     | * <del></del>  |
|                                         | END                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     | Ţ              |
| ~                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | 1              |
| Ç                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | 1              |
|                                         | FOR \$9971 \$9971                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     | 1              |
| - I                                     | FOR SAALLASAALT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | 1              |
|                                         | SUBROUTINE ADSORB(DELT) COMMON /BLOK2/ ABED(41), A(41), AVC(41), CPG(41), RHOG(41),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     | 1              |
|                                         | COMMON /BLOK2/ ABEDI 4111 A 41 |     | 1              |
|                                         | 1HXG(41) *HXS(41) *HXC(41) *DIF(41) *F(41) *C(41) *VS(2) *DVS(2) *DVS1(2) *R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •   | ī              |
|                                         | 251(2,41) •RHOS(2) •UG(41) •WM(2) •UC(41) •NDXM •PS(41) •RHOSB(41) •DS(41) •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     | 1              |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | . <del>-</del> |
|                                         | 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     | 1              |
|                                         | - e. EDIT. 411-DCID1-NDY1-NDR4-DX-DX-DX-GK(41)-DH(41)-DK(41)-PIN41-PPAN41-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     | 1              |
|                                         | 6.P3(41) *WS(41) *CR1(2.21) *CR2(2.21) *CR3(2.21) *C3(21.41) *B(21.41) *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     | <u></u>        |
|                                         | 70(21.41).CP1(41).CP2(41).X(41).VOIDF(41).TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     | 1              |
|                                         | 8 AXC(41) • RHOC(41) • CPC(41) • T268 • AVX(41) • TKX(41) • CPX(41) • RHOX(41)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     | 1              |
|                                         | 8+AXC(41)+RHOC(41)+CPC(41)+125B7AVA(41)+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A-11+1A |     | 1              |
|                                         | 9.NOG. PE (2.41) . PCO21 . PH2O1 . GMR. GMW . TG1 . PA. PI (41) . CP5(41) . H5G(41)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     | 1              |
| •                                       | COMMON /BLOK3/ W(21+41) + TG(41) + TS(41) + TC(41) + TX(41) + CYCLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     | 1              |
|                                         | COMMON /BLOK12/ NTEMP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     | Ţ              |
|                                         | DIMENCIAN AS(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | <u> </u>       |
| g                                       | EQUIVALENCE (ASX+AXS) + (AGX+AXG) + (ASG+AGS) + (HXS+HSX) + (HXG+HGX) + (HSG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     | 1              |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | 1              |
|                                         | 1.HGS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     | 1              |
|                                         | DT = DELT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     | 1              |
|                                         | AS(1)=4.*3.1416*RS(1)**2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     | 1              |
|                                         | AS(2)=4.*3.1416#R5(2)**2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     | ī              |
| C                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | 1              |
| C                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | î              |
| C                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | •              |
|                                         | DATA RGAS/554./                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | 1              |
| c                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | 1              |
| •                                       | NDR=NDR4-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     | 1              |
|                                         | DO 21 N=1+NDX1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     | _1             |
| 100                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | 1              |
|                                         | I=IFN(N•NDXM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     | 1              |
|                                         | DO 20 NR * 1 • NDR 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     | 1              |
|                                         | C1(NR*N)=-CR2(I*NR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     | 1              |
|                                         | C2(NR+N)=CR1(I+NR)/DT+CR2(I+NR)+CR3(I+NR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     | î              |
|                                         | 20 C3(NR+N)=-CR3(I+NR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     | î              |
| с                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                |
| Č                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                |
| •                                       | B(1*N)=C3(1*N)/C2(1*N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     | Ţ              |
|                                         | DO 21 J=2+NDR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     | _1,            |
|                                         | 21 B(J+N) ±C3(J+N)/(C2(J+N)-C1(J+N)*B(J-1+N))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     | 1              |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | 1              |
|                                         | NDX=NDX1-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     | _1             |
| C.                                      | TO TEMPORARILY STORE SURFACE LOADING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     | 1              |
|                                         | DO 50 N=1+NDX1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     | ~ ,            |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                |

```
WS(N)=W(NDR4+N)
                                                                                            1
      IF (NTEMP .EQ. 0.) GO TO 111
      TO CALCULATE CS1+CS2+DS FOR SORBENT HEAT BALANCE EQUATION
                                                                                            DO 12 N=1+NDX1
      I=IFN(N+NDXM)
      CS2(N)=DT/CPS(N)/RHOSB(N)*ASG(N)*GK(N)*WM(1)*DH(N)
      CSI(N) = CS2(N)
      IF (N.EO.1) GO TO 13
      IF (N.EQ.NDX1) GO TO 14
      S1=SK(N)/DX#*2*(TS(N-1)-2.*TS(N)+TS(N+1))
      GO TO 15
   13 S1=SK(1)/DX##2#(TS(2)-TS(1))
      GO TO 15
   14 S1=SK(NDX1)/DX**2*(TS(NDX)-TS(NDX1))
   15 DS(N)=DT/CPS(N)/RHOSB(N)*(S1+ASG(N)*HSG(N)*(TG(N)-TS(N))+A5X(N)*HX
     15(N) * (TX(N)-TS(N)))
   12 CONTINUE
      GO TO 110
  111 DO 112 N= 1. NDX1
      CS1(N)=0.
      CS2(N)=0.
      DS(N)=0.
      TS(N)=T268
      TC(N)=T268
      TX(N)=T268
      TG(N)=T268
  112 CONTINUE
  110 CONTINUE
C
      TO CALCULATE PARTIAL PRESSURE OF ADSORBATE IN GAS STREAM
C
      DO 24 N=1.NDX1
      I=IFN(N+NDXM)
      TO CALCULATE P1+P2+P3
C
      DPKDTS=
            [PKEQ[].W[NDR4,N].[TS[N]+0.001]]-PKEQ[].W[NDR4,N].TS[N]]]/
     20.001
      DPKDWK=(PKEO(I + (W(NDR4+N)+1+E-6)+TS(N))-PKEQ(I+W(NDR4+N)+TS(N))1/1
     1.E-6
      G=1.+CS2(N)*DPKDTS
      PI(N)=(PKEQ(I, W(NDR4, N), TS(N))+DS(N)*DPKDTS)/G
      P2(N)=DPKDWK/G
      P3(N) = CS1(N)/G*DPKDTS
C
      C2(NDR4+N)=CR1(I+NDR4)/DT+CR2(I+NDR4)+WM(I)*GK(N)*P2(N)*AS(I)
      C3(NDR4+N) =0.0
      DO 23 NR=1+NDR4
   23 D1(NR+N)=CR1(I+NR)/DF*W(NR+N)
      D1(NDR4+N)=D1(NDR4+N)-WM(I)+GK(N)+(P1(N)-P2(N)+W(NDR4+N))+AS(I)
      D2(N) = AS(I) + WM(I) + GK(N) + ( 1.
                                     -P3(N)1
      D2(N) *D2(N) / (C2(NDR4+N)-C1(NDR4+N)*B(NDR4-1+N))
      D(1+N) *D1(1+N)/C2(1+N)
      DO 24 J-2+NDR4
   24 \cdot Q(J_0N) = (D_1(J_0N) - C_1(J_0N) + Q(J_1N)) / (C_2(J_0N) - C_1(J_0N) + B(J_1N))
C
      DO 25 N=1+NDX1
      I=IFN(N+NDXM)
```

```
CP1(N) = ASG(N) * GK(N) * (P1(N) + P2(N) * (Q(NDR4+N) - W(NDR4+N)))
   25 CP2(N)=ASG(N)*GK(N)*(P2(N)*D2(N)+P3(N)-1.0)
      PK(1+NDX1+1) = PC021
      PK(2+NDX1+1) = PH201
      DO 26 N=1+NDX1
      N1 = NDXI + 1 - N
      I=IFN(N1 . NDXM)
      PK(I+N1) = (PK(I+N1+1)/DX+CP1(N1)/A(N1))
                                            /(1./DX-CP2(N1)/A(N1))
     1
      IF (1.E0.1)J=2
      IF(I.EQ.2)J=1
      PK(J*N1)=PK(J*N1+1)
   26 CONTINUE
Ç
Ċ
C
      TO CALCULATE SORBENT LOADING
      DO 30 N=1+NDX1
      I=IFN(N+NDXM)
      W(NDR4+N)=Q(NDR4+N)+D2(N)*PK(I+N)
      DO 30 J=2.NDR4
      L=NDR4+1-J
   30 W(L+N)=Q(L+N)-B(L+N)+W(L+1+N)
C
C
      IF I NTIMP . FQ. OI RETURN
      TO CALCULATE SORBENT GLYCOLINX CORE AND GAS TEMPERATURES
(
C
      CALL ISORBA
      CALL TGLCOLITC . NDX1 . UC . RHOC . CPC . CX . AXC . HXC . T268 . TX . DX . DT . AVC . NOG )
      CALL HXCOREITX.TC.TS.TG.HXC.HXS.HXG.RHOX.CPX.TKX.DX.DT.NDX1.AVX.
     INDXMI
      CALL GASTA (GMR+CPG+ABED+NDX1+TGI+ASG+HSG+AXG+HXG+DX+TG+TS+TX)
      RETURN
      END
C
¢
C
      FOR $9977 $9977
      SUBROUTINE TSORBA
      COMMON /BLOK2/ ABED(41), A(41), AVC(41), CPG(41), RHOG(41),
      1HXG(41)*HXS(41)*HXC(41)*DIF(41)*F(41)*C(41)*VS(2)*DVS(2)*DVS(2)*R
     251(2+41) *RHOS(2) *UG(41) *WM(2) *UC(41) *NDXM *PS(41) *RHOSB(41) *DS(41) *
      3C51(41)+C52(41)+C1(21+41)+C2(21+41)+D1(21+41)+D2(41)+PC1(41)+PC2(4
     41) *PC3(41) *ASG(41) *ASX(41) *AGX(41) *C1P(41) *C2P(41) *C3P(41) *D1P(41)
     5.FR(2.41).RS(2).NDX1.NDR4.DX.DT.GK(41).DH(41).SK(41).P1(41).P2(41)
     6.P3(41).W5(41).CR1(2.21).CR2(2.21).CR3(2.21).C3(21.41).B(21.41).
     70(2)+41)+CP1(41)+CP2(41)+X(41)+VOIDE(41)+TIME
     8*AXC(41)*RHOC(41)*CPC(41)*T268*AVX(41)*TKX(41)*CPX(41)*RHOX(41)
     9.NOG.PK(2.41).PCO21.PH201. GMR.GMW.TGI.PA.PT(41).CPS(41).HSG(41)
      COMMON /BLOK3/ W(21,41),TG(41),TS(41),TC(41),TX(41),CYCLE
      COMMON /BLOK8/ DTO.TS1(41).TS2(41).TX1(41).TX2(41).TC1(41).TC2(41)
      DIMENSION 51(41) + S2(41) + S3(41) + B1(41)
      RATIO = (DT+DTO)/DT
      DO 10 N=1.NDX1
      CS1(N) = RATIO * CS1(N)
```



|                                       | T. ART. RTOL (CRC (ALL ARLIGERALIA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ā                                                             |
|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
|                                       | T=(DT+DTO)/CPS(N)/RHOSB(N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                             |
|                                       | T1=0.5*T*(ASG(N)*HSG(N)+ASX(N)*HXS(N))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _1                                                            |
|                                       | I≡IFN(N+NDXM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .1                                                            |
|                                       | TGAVG1=TG(N)<br>B1(N) =TS2(N)+CS1(N)*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .1                                                            |
| <del></del>                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <del></del>                                                   |
|                                       | 1PK(1+N) 2 -CS2(N)*(P1(N)+P2(N)*(W(NDR4+N)-WS(N))+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                             |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ្សាយ                                                          |
|                                       | 1P3(N)* 2PK(I•N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - <del>*</del>                                                |
|                                       | 3 )+T*(ASG(N)*HSG(N)*TGAVG1+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                             |
|                                       | 4ASX(N)*HX5(N)*TX1(N)1-T1*TS2(N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ť                                                             |
| <del></del>                           | \$1(N)*-T*\$K(N)/DX/DX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                             |
| ,                                     | 52(N) = 1 - 2 + 51(N) + T1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ī                                                             |
|                                       | \$3(N)=\$1(N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                             |
|                                       | CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                             |
| • •                                   | \$2(1)*52(1)+51(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ī                                                             |
|                                       | \$1(1) = 0 · 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                             |
|                                       | \$2(NDX1)=\$2(NDX1)+\$3(NDX1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | · 1                                                           |
|                                       | \$3(NDX1)=0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                             |
|                                       | NSG=NDXM+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                             |
|                                       | S2(NDXM)=52(NDXM)+S3(NDXM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                             |
|                                       | 53(NDXM)+0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                             |
|                                       | 57(N°G) = °12(NSG) + 51(NSG)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                             |
|                                       | \$1(N5G) = 0 • 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                             |
|                                       | CALL FDEQIM(S1.S2.S3.B1.TS.NDX1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                             |
|                                       | RETURN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u> </u>                                                      |
|                                       | END                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ţ                                                             |
| , C                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                             |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                                                             |
|                                       | PAR CORTA CORTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u> </u>                                                      |
| <u>C</u>                              | FOR S9976 S9976                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                             |
|                                       | SUBROUTINE GASTAIGMR.CPG.ABED.NDX1.TGI.ASG.HSG.AXG.HXG.DX.TG.TS.TX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 1                                                           |
| سنوسي عداده،                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 1 1 1                                                       |
| · · · · · ·                           | SUBROUTINE GASTA(GMR,CPG,ABED,NDX1,TGI,ASG,HSG,AXG,HXG,DX,TG,TS,TX  1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                       |
| سنوسي عداده،                          | SUBROUTINE GASTAIGMR.CPG.ABED.NDX1.TGI.ASG.HSG.AXG.HXG.DX.TG.TS.TX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 1 1 1 1 1 1 1 1                                             |
| · · · · · · · · · · · · · · · · · · · | SUBROUTINE GASTA(GMR,CPG,ABED,NDX1,TGI,ASG,HSG,AXG,HXG,DX,TG,TS,TX  1)  GAS TEMPERATURE CALCULATIONS FOR ADSORPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                               |
| · · · · · · · · · · · · · · · · · · · | SUBROUTINE GASTA(GMR,CPG,ABED,NDX1,TG1,ASG,HSG,AXG,HXG,DX,TG,TS,TX  1)  GAS TEMPERATURE CALCULATIONS FOR ADSORPTION  DIMENSION CPG(1),ASG(1),HSG(1),HXG(1),TG(1),TS(1),TX(1),ABED(1),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1<br>1<br>1<br>1<br>1<br>1<br>1                               |
| C C                                   | SUBROUTINE GASTA(GMR,CPG,ABED,NDX1,TGI,ASG,HSG,AXG,HXG,DX,TG,TS,TX  1)  GAS TEMPERATURE CALCULATIONS FOR ADSORPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                          |
| · · · · · · · · · · · · · · · · · · · | SUBROUTINE GASTA(GMR,CPG,ABED,NDX1,TG1,ASG,HSG,AXG,HXG,DX,TG,TS,TX  1)  GAS TEMPERATURE CALCULATIONS FOR ADSORPTION  DIMENSION CPG(1),ASG(1),HSG(1),HXG(1),TG(1),TS(1),TX(1),ABED(1),  1AXG(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                     |
| C C                                   | SUBROUTINE GASTA(GMR,CPG,ABED,NDX1,TG1,ASG,HSG,AXG,HXG,DX,TG,TS,TX  1)  GAS TEMPERATURE CALCULATIONS FOR ADSORPTION  DIMENSION CPG(1),ASG(1),HSG(1),HXG(1),TG(1),TS(1),TX(1),ABED(1),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                |
| C C                                   | SUBROUTINE GASTA(GMR,CPG,ABED,NDX1,TG1,ASG,HSG,AXG,HXG,DX,TG,TS,TX  1)  GAS TEMPERATURE CALCULATIONS FOR ADSORPTION  DIMENSION CPG(1),ASG(1),HSG(1),HXG(1),TG(1),TS(1),TX(1),ABED(1),  1AXG(1)  TG(NDX1+1) = TGI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                |
| C C                                   | SUBROUTINE GASTA(GMR, CPG, ABED, NDX1, TG1, ASG, HSG, AXG, HXG, DX, TG, TS, TX  1)  GAS TEMPERATURE CALCULATIONS FOR ADSORPTION  DIMENSION CPG(1), ASG(1), HSG(1), HXG(1), TG(1), TS(1), TX(1), ABED(1),  1AXG(1)  TG(NDX1+1) = TGI DO 10 N=1, NDX1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1           |
| C                                     | SUBROUTINE GASTA(GMR,CPG,ABED,NDX1,TG1,ASG,HSG,AXG,HXG,DX,TG,TS,TX  1)  GAS TEMPERATURE CALCULATIONS FOR ADSORPTION  DIMENSION CPG(1),ASG(1),HSG(1),HXG(1),TG(1),TS(1),TX(1),ABED(1),  1AXG(1)  TG(NDX1+1) = TGI DO 10 N=1,NDX1 C=GMR*CPG(N)/ABED(N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 |
| , c                                   | SUBROUTINE GASTA(GMR,CPG,ABED,NDX1,TG1,ASG,HSG,AXG,HXG,DX,TG,TS,TX  AS TEMPERATURE CALCULATIONS FOR ADSORPTION  DIMENSION CPG(1),ASG(1),HSG(1),HXG(1),TG(1),TS(1),TX(1),ABED(1),  TG(NDX1+1) = TGI DO 10 N=1,NDX1 C=GMR*CPG(N)/ABED(N) N1=NDX1+1-N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                               |
| C C                                   | SUBROUTINE GASTA(GMR,CPG,ABED,NDX1,TG1,ASG,HSG,AXG,HXG,DX,TG,TS,TX  1)  GAS TEMPERATURE CALCULATIONS FOR ADSORPTION  DIMENSION CPG(1),ASG(1),HSG(1),HXG(1),TG(1),TS(1),TX(1),ABED(1),  1AXG(1)  TG(NDX1+1) = TGI DO 10 N=1,NDX1  C=GMR*CPG(N)/ABED(N) N1=NDX1+1-N C1=ASG(N1)*HSG(N1)+AXG(N1)*HXG(N1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                               |
| , c                                   | SUBROUTINE GASTA(GMR,CPG,ABED,NDX1,TG1,ASG,HSG,AXG,HXG,DX,TG,TS,TX  1)  GAS TEMPERATURE CALCULATIONS FOR ADSORPTION  DIMENSION CPG(1),ASG(1),HSG(1),HXG(1),TG(1),TS(1),TX(1),ABED(1),  TG(NDX1+1) = TGI DO 10 N=1,NDX1  C=GMR*CPG(N)/ABED(N) N1=NDX1+1-N  C1=ASG(N1)*HSG(N1)+AXG(N1)*HXG(N1)  TG(N1) = (TG(N1+1)/DX+(ASG(N1)*HSG(N1)*TS(N1)+AXG(N1))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                               |
| , c                                   | SUBROUTINE GASTA(GMR,CPG,ABED,NDX1,TG1,ASG,HSG,AXG,HXG,DX,TG,TS,TX  1)  GAS TEMPERATURE CALCULATIONS FOR ADSORPTION  DIMENSION CPG(1),ASG(1),HSG(1),HXG(1),TG(1),TX(1),ABED(1),  1AXG(1)  TG(NDX1+1) = TGI DO 10 N=1,NDX1 C=GMR*CPG(N)/ABED(N) N1=NDX1+1-N C1=ASG(N1)*HSG(N1)+AXG(N1)*HXG(N1) TG(N1) = (TG(N1+1)/DX+(ASG(N1)*HSG(N1)*TS(N1)+AXG(N1))/  1 *HXG(N1)*TX(N1))/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                               |
| , c                                   | SUBROUTINE GASTA(GMR,CPG,ABED,NDX1,TG1,ASG,HSG,AXG,HXG,DX,TG,TS,TX  1)  GAS TEMPERATURE CALCULATIONS FOR ADSORPTION  DIMENSION CPG(1),ASG(1),HSG(1),HXG(1),TG(1),TX(1),ABED(1),  1AXG(1)  TG(NDX1+1) = TGI DO 10 N=1,NDX1 C=GMR*CPG(N)/ABED(N) N1=NDX1+1-N C1=ASG(N1)*HSG(N1)+AXG(N1)*HXG(N1) TG(N1) = (TG(N1+1)/DX+(ASG(N1)*HSG(N1)*TS(N1)+AXG(N1)  1 1C)/(1*/DX+C1/C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                               |
| , c                                   | SUBROUTINE GASTA(GMR.CPG.ABED.NDX1.TGI.ASG.HSG.AXG.HXG.DX.TG.TS.TX  1)  GAS TEMPERATURE CALCULATIONS FOR ADSORPTION  DIMENSION CPG(1).ASG(1).HSG(1).HXG(1).TG(1).TX(1).ABED(1).  TG(NDX1+1) = TGI DO 10 N=1.NDX1 C=GMR*CPG(N)/ABED(N) N1=NDX1+1-N C1=ASG(N1)*HSG(N1)+AXG(N1)*HXG(N1) TG(N1) = (TG(N1+1)/DX+(ASG(N1)*HSG(N1)*TS(N1)+AXG(N1) 1 1C)/(1.ODX+C1/C) RETURN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                               |
| C C C                                 | SUBROUTINE GASTA(GMR.CPG.ABED.NDX1.TGI.ASG.HSG.AXG.HXG.DX.TG.TS.TX  1)  GAS TEMPERATURE CALCULATIONS FOR ADSORPTION  DIMENSION CPG(1).ASG(1).HSG(1).HXG(1).TG(1).TX(1).ABED(1).  TG(NDX1+1) = TGI DO 10 N=1.NDX1 C=GMR*CPG(N)/ABED(N) N1=NDX1+1-N C1=ASG(N1)*HSG(N1)+AXG(N1)*HXG(N1) TG(N1) = (TG(N1+1)/DX+(ASG(N1)*HSG(N1)*TS(N1)+AXG(N1) 1 1C)/(1.ODX+C1/C) RETURN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                               |
| C C C                                 | SUBROUTINE GASTA(GMR.CPG.ABED.NDX1.TGI.ASG.HSG.AXG.HXG.DX.TG.TS.TX  1)  GAS TEMPERATURE CALCULATIONS FOR ADSORPTION  DIMENSION CPG(1).ASG(1).HSG(1).HXG(1).TG(1).TX(1).ABED(1).  TG(NDX1+1) = TGI DO 10 N=1.NDX1 C=GMR*CPG(N)/ABED(N) N1=NDX1+1-N C1=ASG(N1)*HSG(N1)+AXG(N1)*HXG(N1) TG(N1) = (TG(N1+1)/DX+(ASG(N1)*HSG(N1)*TS(N1)+AXG(N1) 1 1C)/(1.ODX+C1/C) RETURN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                               |
| C C C                                 | SUBROUTINE GASTA(GMR * CPG * ABED * NDX1 * TG1 * ASG * HXG * DX * TG * TS * TX  1)  GAS TEMPERATURE CALCULATIONS FOR ADSORPTION  DIMENSION CPG(1) * ASG(1) * HSG(1) * HXG(1) * TS(1) * TX(1) * ABED(1) *  TG(NDX1+1) = TGI  DO 10 N=1 * NDX1  C=GMR*CPG(N) * ABED(N)  N1=NDX1+1-N  C1=ASG(N1) * HSG(N1) + AXG(N1) * HXG(N1)  TG(N1) = (TG(N1+1) / DX + (ASG(N1) * HSG(N1) * TS(N1) + AXG(N1) * TX(N1) } /  1C) / (1 * / DX + C1 / C)  RETURN END  FOR \$9979 * \$9979                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                               |
| C C C C C C C C C C C C C C C C C C C | SUBROUTINE GASTA(GMR+CPG+ABED+NDX1+TG1+ASG+HSG+AXG+HXG+DX+TG+TS+TX  1)  GAS TEMPERATURE CALCULATIONS FOR ADSORPTION  DIMENSION CPG(1)+ASG(1)+HSG(1)+HXG(1)+TG(1)+TX(1)+ABED(1)+  TG(NDX1+1) = TGI  DO 10 N=1+NDX1  C=GMR*CPG(N)/ABED(N)  N1=NDX1+1-N  C1=ASG(N1)+HSG(N1)+AXG(N1)+HXG(N1)  TG(N1) = (TG(N1+1)/DX+(ASG(N1)+HSG(N1)+TS(N1)+AXG(N1)  1  1C)/(1+DX+C1/C)  RETURN END                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                               |
| C C C C C C C C C C C C C C C C C C C | SUBROUTINE GASTA(GMR * CPG * ABED * NDX1 * TG1 * ASG * HXG * DX * TG * TS * TX  1)  GAS TEMPERATURE CALCULATIONS FOR ADSORPTION  DIMENSION CPG(1) * ASG(1) * HSG(1) * HXG(1) * TG(1) * TS(1) * TX(1) * ABED(1) *  TG(NDX1+1) = TG1  DO 10 N=1 * NDX1  C=GMR*CPG(N) / ABED(N)  N1=NDX1+1-N  C1=ASG(N1) * HSG(N1) + AXG(N1) * HXG(N1)  TG(N1) = (TG(N1+1) / DX + (ASG(N1) * HSG(N1) * TS(N1) + AXG(N1)  1  C) / (1 * / DX + C1 / C)  RETURN END  FOR \$9979 * \$9979  SUBROUTINE PRADSB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                               |
| C C C C C C C C C C C C C C C C C C C | SUBROUTINE GASTA(GMR * CPG * ABED * NDX1 * TG1 * ASG * HXG * DX * TG * TS * TX  1)  GAS TEMPERATURE CALCULATIONS FOR ADSORPTION  DIMENSION CPG(1) * ASG(1) * HSG(1) * HXG(1) * TS(1) * TX(1) * ABED(1) *  TG(NDX1+1) = TGI  DO 10 N=1 * NDX1  C=GMR*CPG(N) * ABED(N)  N1=NDX1+1-N  C1=ASG(N1) * HSG(N1) + AXG(N1) * HXG(N1)  TG(N1) = (TG(N1+1) / DX + (ASG(N1) * HSG(N1) * TS(N1) + AXG(N1) * TX(N1) } /  1C) / (1 * / DX + C1 / C)  RETURN END  FOR \$9979 * \$9979                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                               |
| C C C C C C C C C C C C C C C C C C C | SUBROUTINE GASTA(GMR+CPG+ABED+NDX1+TG1+ASG+HSG+AXG+HXG+DX+TG+TS+TX  ASS TEMPERATURE CALCULATIONS FOR ADSORPTION  DIMENSION CPG(1)+ASG(1)+HSG(1)+HXG(1)+TG(1)+TS(1)+TX(1)+ABED(1)+  TG(NDX1+1) = TGI  DO 10 N=1+NDX1  C=GMR*CPG(N)/ABED(N)  N1=NDX1+1-N  C1=ASG(N1)*HSG(N1)+AXG(N1)*HXG(N1)  TG(N1) = (TG(N1+1)/DX+(ASG(N1)*HSG(N1)*TS(N1)+AXG(N1)  1  1C)/(1-/DX+C1/C)  RETURN END  FOR S9979+S9979  SUBROUTINE PRADSB  COMMON /BLOK2/ ABED(41)+ A(41)+ AVC(41)+CPG(41)+RHOG(41)+  1HXG(41)+HXS(41)+HXC(41)+DIF(41)+F(41)+C(41)+VS(2)+DVS(2)+DVS(2)+R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                               |
| C C C C C C C C C C C C C C C C C C C | SUBROUTINE GASTA(GMR * CPG * ABED * NDX1 * TG1 * ASG * HXG * AXG * HXG * DX * TG * TS * TX  1)  GAS TEMPERATURE CALCULATIONS FOR ADSORPTION  DIMENSION CPG(1) * ASG(1) * HSG(1) * HXG(1) * TG(1) * TS(1) * TX(1) * ABED(1) *  1AXG(1)  TG(NDX1+1) = TGI  DO 10 N=1 * NDX1  C=GMR * CPG(N) / ABED(N)  N1=NDX1+1-N  C1=ASG(N1) * HSG(N1) + AXG(N1) * HXG(N1)  TG(N1) = (TG(N1+1) / DX + (ASG(N1) * HSG(N1) * TS(N1) + AXG(N1)  1  **HXG(N1) * TX(N1) / TX(N1) |                                                               |

```
3C51(41)+C52(41)+C1(21+41)+C2(21+41)+D1(21+41)+D2(41)+PC1(41)+PC2(4
  41) *PC3(41) *ASG(41) *ASX(41) *AGX(41) *C1P(41) *C2P(41) *C3P(41) *D1P(41)
  5.FR(2,41).RS(2).NDX1.NDR4.DX.DT.GK(41).DH(41).SK(41).P1(41).P2(41)
   6.P3(41).WS(41).CR1(2.21).CR2(2.21).CR3(2.21).C3(21.41).B(21.41).
   70(21+41) + CP1(41) + CP2(41) + X(41) + VOIDF(41) + TIME
   8 + AXC(41) + RHOC(41) + CPC(41) + T268 + AVX(41) + TKX(41) + CPX(41) + RHOX(41)
   9.NOG.PK(2.41).PCO2I:PH2OI. GMR.GMW.TGI.PA.PT(41).CPS(41).HSG(41)
   COMMON /BLOK3/ W(21,41), TG(41), TS(41), TC(41), TX(41), CYCLE
   COMMON /BLOK11/ TOTCO2+TOTH20+SUMPTM+WTACMS+WTSG
   COMMON /BLOK16/ NDXMAC
   COMMON /BLOK14/ NCYCLE
    DIMENSION AVLD(41)
    EQUIVALENCE (NDX+NDX1)
   AVPH20 # SUMPTM/TIME
    AVH2OP=GMR*AVPH2O*18./(PA*GMW)
   TIMEM=60. #TIME
    WRITE (6.100) NCYCLE. TIME. TIMEM. DT
    WRITE (6.101)
    WRITE(6+102)(N+PK(1+N)+PK(2+N)+
                           TG(N) +TS(N) +TC(N) +TX(N) +N=1 +NDX)
    WRITE (6+202)
   N1=NDXM+1
   NDR3=NDR4-1
    DO 20 N= 1 . NDXM
    SUMMS=0.0
    SUMMS=SUMMS+0.5*(W(1.N)+W(NDR4.N))
   DO 22 NR=2+NDR3
 22 SUMMS=SUMMS+WINR+N1
    AVLD(N)=SUMMS/NDR3
 20 CONTINUE
   DO 30 N= N1+NDX1
    SUMMS=0.0
    SUMMS = SUMMS + 0.5 * (W(1.0N) + W(NDR4.0N))
    DO 33 NR = 2 + NDR3
33 SUMMS=SUMMS+W(NR+N)
    AVLD(N) = SUMMS/NDR3
 30 CONTINUE
    SUM=0.
    DO 31 N= 1 + NDXMAC
 31 SUM= SUM+AVLD(N) *ABED(N) *DX*RHOSB(N)
    AVMSLD = SUM/WTACMS.
    SUM=0.
    DO 32 N= N1+NDX1
 32 SUM = SUM+AVLD(N)*ABED(N)*DX*RHOSB(N)
    AVSGLD=SUM/WTSG
    DO 10 N=1+NDX
 10 WRITE (6.203)N. AVLD(N)
                  • (W(NR+N) • NR=1 • NDR4)
    WRITE (6+205) AVMSLD+ AVSGLD
    AVRC02=TOTC02/TIME
    AVRH20=TOTH20/TIME
    WRITE(6.204) AVRC02.AVRH20
    WRITE(6. 206) AVPH20. AVH20P
    RETURN
100 FORMAT (1H1+16HADSORPTION CYCLE 13/
             3X+5HTIME=+F9+5+1X2HHR+F12+3+1X+3HMIN+
                                      5X+15HTIME INCREMENT=F7.5+1X2HHR1
```

```
101 FORMAT 1//2X+10HAXIAL NODE+3X+7HPCO2+MM+5X+7HPH2O+MM+8X+
                                                          11HGAS- TEMP. F
                                  .6X.14HGLYCOL TEMP. F
       *8X *15HSORBENT TEMP + F
                                                            •7X•15HHX_CO_
   2RE TEMP. F 1
102 FORMAT(/(19.2F12.4.5X.4(F14.4.6X)))
202 FORMAT 1// 38HOLOADING AT INTERIOR OF SORBENT. LB/LB
                                                    //4X+4HSORB/4X+4HNOD
   1E+3X+ 3HAVG+ 9X+
         1H1+9X+1H2+9X+1H3+9X+1H4+9X+1H5+9X+1H6+9X+1H7+9X+
   21H8+9X+1H9+8X+2H10+
   28X+2H11/6H AXIAL/5H NODE)
203 FORMAT ( 15+4X+12(F6+4+4X))
204 FORMATI/27HOTIME AVG CO2 ADSORP RATE * .
        F8.4. 6H LB/HR .10X.
   227H TIME AVG H20 ADSORP RATE #
     F8.4. 7H LB/HR
205 FORMATI/// 30H AVG COZ LOADING IN M.S. BED = F8.4.1X.5HLB/LB.7X.
   130H AVG H20 LOADING IN S.G. BED = F8.4, 6H LB/LB)
206 FORMAT( //21H TIME AVG EXIT PH20 = , F10.4, 3H MM ,18X,
   140HTIME AVG RATE OF M.S. POISONING BY HZO. = . G8.4.6H LB/HR )
     FOR 59980 $59980
    SUBROUTINE MDESOR
    MAIN PROGRAM FOR TRANSIENT DESCRPTION BED CALCULATIONS
    COMMON /BLOK1/ ABED(41) . A(41) . AVC(41) . CPG(41) . RHOG(41) .
   1HXG(41) *HXS(41) *HXC(41) *DIF(41) *F(4.1) *C(41) *VS(2) *DVS(2) *DVS1(2) *R
   251(2+41)+RHOS(2)+UG(41)+WM(2)+UC(41)+NDXM+PS(41)+RHOSB(41)+DS(41)+
   3C51(41),C52(41),C1(21,41),C2(21,41),D1(21,41),D2(41),PC1(41),PC2(4
   411.PC3(41).ASG(41).ASX(41).AGX(41).C1P(41).C2P(41).C3P(41).D1P(41)
   5.FR(2.41).RS(2).NOX1.NDR4.DX.DT.GK(41).DH(41).SK(41).P1(41).P2(41)
   6+P3(41)+W5(41)+CR1(2+21)+CR2(2+21)+CR3(2+21)+C3(21+41)+B(21+41)+
   70(21,411,CP1(41),CP2(41),X(41),VOIDF(41),TIME
   8 AXC(41) + RHOC(41) + CPC(41) + T268 + AVX(41) + TKX(41) + CPX(41) + RHOX(41)
   9.NOG.PK(2.41).PCO21.PH201. GMR.GMW.TGI.PA.PT(41).CPS(41).HSG(41)
    DOUBLE PRECISION C1P+C2P+C3P+D1P
   COMMON /BLOK3/ W(21+41)+TG(41)+TS(41)+TC(41)+TX(41)+CYCLE
    COMMON /BLOK8/ DTO.TS1(41).TS2(41).TX1(41).TX2(41).TC1(41).TC2(41)
    COMMON /BLOK10/ NPRINT+DTMAX
    COMMON /BLOK11/ TOTCO2, TOTH20
    COMMON /BLOK13/ WI+ TI
    TIME = 0.0
    DT • 1.1-5
    010 -0.0
    TOTC02=0.0
    TOTH20=0.0
    DO 20 N=1+NDX1
    TSI(N)= TS(N)
    TS2(N) = TS(N)
    TX2(N)=TX(N)
    TX1(N)=TX(N)
    TC1(N)=TC(N)
    TC2(N) = TC(N)
 20 CONTINUE
```

```
CALL PRDESB
      NPR = 0
      GO TO 3
    2 CALL PRDESB
      IFI TIME .GE. CYCLEI GO TO 9999
      NPR = 0
      CONTINUE
      IF! TIME
                 .LT.0.5E-41 GO TO 3
      ADT=DTMAX
      DO 60 N= 1 + NDX1
                   /(ABS(W(NDR4+N)-WS(N))+1.E-9)*DT
      ADT2=WI
      IF (ADT2.LT. ADT)_ADT =ADT2_
      ADT2=T1/(ABS(TS1(N)-TS2(N))+1.E-9)+DT
      IF(ADT2.LT. ADT) ADT=ADT2
      ADT2=TI/(ABS(TX1(N)-TX2(N))+1.E-9)*DT
      IF(ADT2.LT. ADT) ADT=ADT2
   60 CONTINUE
      DTO=DT
      DT = ADT
      IF ( (TIME+DT) .GT. CYCLE) DT = CYCLE-TIME
    3 CONTINUE
      CALL DESORBIDT)
      TOTCO2=TOTCO2+DT#FR(1+NDX1)*WM(1)
      TOTH20=TOTH20+DT#FR(2+NDX1)#WM(2)
      DO 21 N=1+NDX1
      TS2(N)=TS1(N)
      TS1(N)=TS(N)
      TX2(N) = TX1(N)
      TX1(N)=TX(N)
      TC2(N)=TC1(N)
      TC1(N) = TC(N)
   21 CONTINUE
      TIME=TIME+DT
      NPR=NPR+1
      IF (NPR .GE. NPRINT) GO TO 2
      IF(TIME .GE. CYCLE) GO TO 2
      GO TO 4
      CONTINUE
      RETURN
      LND
c
-11
       FOR $9988 $59988
      SUBROUTINE START
      COMMON /BLOK1/ ABED(41), A(41), AVC(41), CPG(41), RHOG(41),
     1HXG(41) *HXS(41) *HXC(41) *DIF(41) *F(41) *C(41) *VS(2) *DVS(2) *DVS(2) *R
     251(2+41) • RHOS(2) • UG(41) • WM(2) • UC(41) • NDXM • PS(41) • RHOSB(41) • DS(41) •
     3C51(41) + C52(41) + C1(21 + 41) + C2(21 + 41) + D1(21 + 41) + D2(41) + PC1(41) + PC2(4
     41) •PC3(41) •ASG(41) •ASX(41) •AGX(41) •C1P(41) •C2P(41) •C3P(41) •D1P(41)
     5.FR(2.41).RS(2).NDX1.NDR4.DX.DT.GK(41).DH(41).SK(41).P<u>1(41).P2(41)</u>
     6.P3(41).WS(41).CR1(2.21).CR2(2.21).CR3(2.21).C3(21.41).B(21.41).
     70(21+41) • CP1(41) • CP2(41) • X(41) • VOIDF(41) • TIME
     8 • AXC(41) • RHOC(41) • CPC(41) • T268 • AVX(41) • TKX(41) • CPX(41) • RHOX(41)
     9.NOG.PK(2.41).PC021.PH201. GMR.GMW.TGI.PA.PT(41).CPS(41).HSG(41)
      COMMON /BLOK3/ W(21+41)+TG(41)+TS(41)+TC(41)+TX(41)+CYCLE
      DOUBLE PRECISION C1P.C2P.C3P.D1P
Ċ
```



```
RS(1)=RHOSB(1)+3./RHOS(1)/ASG(1)-
     RS(2)=RHDSB(NDX1)
                    #3./RHOS12)/ASG(NDX1)____
     DO 30 N= 1+ NDX1
     RHOG(N) = 0.0003
     X(N) = 0.5
     C(N) = 0.2E-3
     PT(N) = 3.0
     I = IFN(N+NDXM)
  30 VOIDF(N) = 1. - RHOSB(N)/RHOS(I)
     NDR=NDR4-1
     NDR2=2.*NDR
     NDR3=NDR2+1
     DO 10 1=1.2
     VS(1)=4./3.*3.1416*RS(1)**3
     DVS([]=VS([)/NDR
     DVS1(1)=DVS(1)/2
     RS1(1,1)=0.
     DO 10 K=2 . NDR3
  10 RS1(I+K)=CBRT(3./4./3.1416*(4./3.*3.1416*RS1(I+K-1)**3+DVS1(1)))
     DO 11 1=1.2
      IF(I.EQ.1) DIF1=DIF(1)
      IF(I.EQ.2) DIF1=DIF(NDX1)
      CR1(I:1)=DVS1(I)*RHOS(I)____
      CR2(I+1)=0.
      CR3(I+1)=4.*3.1416*RS1(I+2)**2*DIF1
      DO 11 K=2.NDR4
      CR1(I+K)=DVS(I)*RHOS(I)
      CR2(I+K)=4+*3+1416#RS1(I+2*K-2)##2#DIF1 /(RS1(I+2*K-1)-RS1(I+2*K-
     13)1*RHOS(1)
   11 CR3(I+K)=4+*3+1416*RS1(I+2*K)**2*D1F1 /(RS1(I+2*K+1)-RS1(I+2*K-1)
     11*RHOS(11
      CR1(1.NDR4)=CR1(1+1)
      CR1(2.NDR4) = CR1(2.1)
      RETURN
      FND
     FOR $9983, $9983
      SUBROUTINE DESORB(DELT)
C
      COMMON /BLOK1/ ABED(41) + A(41) + AVC(41) + CPG(41) + RHOG(41) +
     1HXG(411+HX5(41)+HXC(41)+DIF(41)+F(41)+C(41)+VS(2)+DVS(2)+DVS(2)+R
     2S1(2+41) + RHOS(2) + UG(41) + WM(2) + UC(41) + NDXM + PS(41) + RHOSB(41) + DS(41) +
     3CS1(41),CS2(41),C1(21,41),C2(21,41),D1(21,41),D2(41),PC1(41),PC2(4
     41) •PC3(41) •ASG(41) •ASX(41) •AGX(41) •C1P(41) •C2P(41) •C3P(41) •D1P(41)
     5.FR(2.41).RS(2).NDX1.NDR4.DX.DT.GK(41).DH(41).SK(41).P1(41).P2(41)
     6.P3(41).WS(41).CR1(2.21).CR2(2.21).CR3(2.21).C3(21.41).B(21.41).
     70(21,41) . CP1(41) . CP2(41) . X(41) . VOIDF(41) . TIME
     8 AXC(41) • RHOC(41) • CPC(41) • T268 • AVX(41) • TKX(41) • CPX(41) • RHOX(41)
      9.NOG.PK(2.41).PCO21.PH201. GMR.GMW.TGI.PA.PT(41).CPS(41).HSG(41)
      COMMON /BLOK3/ W(21+41) . TG(41) . TS(41) . TC(41) . TX(41) . CYCLE
      COMMON /BLOK4/ POUT(10) . TIMET(10) . NBCOUT
      COMMON /BLOK12/ NTEMP
      DIMENSION AS(2) . PD(41)
      DIMENSION P4(41) VIST(2)
      DOUBLE PRECISION PD
      DOUBLE PRECISION C1P+C2P+C3P+D1P
```



|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | EQUIVALENCE TASX+AXS)+(AGX+AXG)+(ASG+AGS)+(HXS+HSX)+(HXG+HGX)+(HSG    |               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                       | •             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1+HG51<br>DATA VIST/ 0.015+ 0.0150 /                                  |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                       |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DT=DELT<br>AS(1)=4.#3.1416#RS(1)##2                                   |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AS(2)=40+301416#RS(2)+#2                                              |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A5127-40-501410_0014                                                  | l '.          |
| Ç                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | . The contract of the contract of $oldsymbol{1}$                      |               |
| c<br>c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                       | L             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DATA RGAS/554./                                                       |               |
| <u>~</u> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DATA ROAD! >>+e-                                                      |               |
| C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NDR*NDR4-1                                                            |               |
| <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | DO 21 N=1+NDX1                                                        | 1             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | J=2                                                                   |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | P4(N)=PT(N)                                                           | <u> </u>      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | I=IFN(N+NDXM)                                                         | 1             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | IF( I •EQ• 2) J=1                                                     | Å.            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | VIS= X(N)*VIST(I)+(1.~X(N))*VIST(J)                                   | <u> </u>      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | F(N)=2.494E-4#PT(N)##0.795#(VIS/0.0174)                               | T             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DO 20 NR=1+NDR4                                                       | 1             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (1(NR.N)=-CR2(I.NR)                                                   | <u></u>       |
| manager a same or may a re-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C2(NR+N)=CR1(I+NR)/DT+CR2(I+NR)+CR3(I+NR)                             | <u>.</u>      |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C3(NR.N)=-CR3(I+NR)                                                   | . ·           |
| C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                       | <u> </u>      |
| c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                       | 1             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | B(1+N)=C3(1+N)/C2(1+N)                                                | i             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DO 21 J=2+NDR                                                         | 1             |
| 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | B(U+N)+C3(U+N) / (C2(U+N)+C1(U+N)+B(U+1+N))<br>NDX+NDX1-1             | i             |
| c :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TO TEMPORARILY STORE SURFACE LOADING                                  | <u> </u>      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DO 50 N=1+NDX1                                                        | 1             |
| 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | WS(N)=W(NDR4+N)                                                       | 1             |
| C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | COLOTION                                                              | 1             |
| c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TO CALCULATE CS1+CS2+DS FOR SORBENT HEAT BALANCE EQUATION             | i             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1F (NTEMP .EQ. 0.) GO TO 111                                          | 1             |
| parameters after the control of the | DO 12 N=1,NDX1                                                        | 1             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | I=IFN(N+NDXM)                                                         | 1             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CS2(N)=DT/CPS(N)/RHOSB(N)*ASG(N)*GK(N)*WM(I)*DH(N)                    | 1             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CS1(N) = CS2(N)*X(N)                                                  | 1             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | IF (N.EQ.1) GO TO 13 IF (N.EQ.NDX1) GO TO 14                          | 1             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | S1=SK(N)/DX#2*(TS(N-1)-2**TS(N)+TS(N+1))                              | 1             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | GO TO 15                                                              | 1             |
| ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3 S1*SK(1)/DX**2*(TS(2)-TS(1))                                        | 1             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | GO TO 15                                                              | 1             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CI CV (NDY 1) /DYBBOB (TS(NDX)-TS(NDX)1)                              | 1             |
| i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5 DS(N) =DT/CPS(N)/RHOSB(N)*(S1+ASG(N)*HSG(N)*(TG(N)-TS(N))+ASX(N)*HX | .1            |
| . •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1S(N) + (TX(N) - TS(N)))                                              | 1             |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2 CONTINUE                                                            | 1             |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | GO TO 110                                                             | 1             |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 DO 112 N=1•NDX1                                                     |               |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CS1(N)=0.                                                             | 1             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CS2(N)=0.                                                             | 1             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DS(N)=0.                                                              | _ <del></del> |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TS(N)=T268                                                            | 1             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TC(N)=T268                                                            | 3             |
| المراجعة المشتنيين والم                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TX(N)=T268                                                            | 1 .           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TG(N)=T268                                                            | •             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                       |               |



|              | CONTINUE<br>CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1            |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| c            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1            |
|              | TO CALCULATE TOTAL PRESSURE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1            |
| Ċ            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1            |
| -            | DO 24 N=1+NDX1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1            |
|              | I=IFN(N,NDXM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1            |
|              | TO CALCULATE P1.P2.P3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1            |
| •            | DPKDTS*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1            |
|              | (PKEQ(1.W(NDR4.N).(TS(N)+0.001))-PKEQ(1.W(NDR4.N).TS(N)))/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1            |
|              | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ī            |
|              | DPKDWK=(PKEQ(1.(W(NDR4.N)+1.E-6).TS(N))-PKEQ(1.W(NDR4.N).TS(N))/1/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ī            |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del>•</del> |
|              | •E~6<br>G≈1•+CS2(N)*DPKDTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1            |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *            |
| المراجع أحشا | P1(N)=(PKEO(I+W(NDR4+N)+TS(N))+DS(N)+DPKDTS)/G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <del></del>  |
|              | P2(N)=DPKDWK/G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u>.</u>     |
|              | P3(N)=CS1(N)/G*DPKDTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1            |
| <u> </u>     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1            |
|              | C2(NDR4+N) = CR1(I+NDR4)/DT+CR2(I+NDR4)+WM(I)*GK(N)*P2(N)*AS(I)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1            |
|              | C3(NDR4+N)=0+0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1            |
|              | DO 23 NR=1+NDR4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1            |
| 23           | D1(NR+N) = CR1(I+NR)/DT*W(NR+N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1            |
| 23           | D1(NDR4*N) = D1(NDR4*N) - WM(1)*GK(N)*(P1(N)-P2(N)*W(NDR4*N))*AS(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ī            |
|              | D2(N) = AS(I) *WM(I) *GK(N) * (X(N) -P3(N))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1            |
|              | D2(N)=D2(N)/(C2(NDR4,N)-C1(NDR4,N)*B(NDR4-1,N))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1            |
|              | Q(1+N)=D1(1+N)/C2(1+N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | î            |
|              | DO 24 J=2,NDR4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | î            |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>     |
| 24           | $Q(J+N)=(D_1(J+N)-C_1(J+N)+Q(J-1+N))/(C_2(J+N)-C_1(J+N)+B(J-1+N))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1            |
| C            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1            |
| . C          | COEFFICIENTS FOR P-EQUATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ·1           |
|              | DO 25 N=2+NDX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1            |
| 25           | PCP(N) = PT(N)/(VOIDE(N)*C(N)*ABED(N))*(VOIDE(N+1)*C(N+1)*ABED(N+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1            |
| 1            | )/!(N+1) - VOID!(N-1)*C(N-1)*ABED(N-1)/!(N-1)/!(2**DX)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1            |
| _            | N=1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1            |
|              | PC2(N) * PT(N)/(VOIDF(N)*C(N)*ABED(N))*(VOIDF(N+1)*C(N+1)*ABED(N+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1            |
|              | )/F(N+1) - VOIDF(N )*C(N )*ABED(N )/F(N ))/(1.*DX)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ī            |
|              | N= NDX1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1            |
|              | PC2(N) = PT(N)/(VOIDF(N)*C(N)*ABED(N))*(VOIDF(N )*C(N )*ABED(N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ÷            |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,            |
|              | 1/F(N ) - VOIDF(N-1)*C(N-1)*ABED(N-1)/F(N-1)]/(1.*DX)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -3           |
|              | DO 26 N=1•NDX1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1            |
|              | PC1(N)=PT(N)/F(N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1            |
| 26           | PC3(N)=PT(N)/C(N)/VOIDF(N)*ASG(N)*GK(N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _1           |
| C            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 .          |
|              | DO 27 N=1•NDX1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1            |
|              | CP1(N)=PC3(N)*(P1(N)+P2(N)*(Q(NDR4+N)-W(NDR4+N)))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1            |
|              | CP2(N) = PC3(N) + (P2(N) + D2(N) + P3(N) - X(N))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1            |
|              | $C1P(N) \approx -PC1(N)/DX/DX+PC2(N)/2 \cdot /DX$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1            |
|              | C2P(N)=1./DT+2.*PC1(N)/DX/DX-CP2(N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1_           |
|              | $C3P(N) = -PC1(N)/DX/DX-PC2(N)/2 \cdot /DX$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1            |
| 27           | $D1P(N) \approx PT(N) / DT + CP1(N)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1            |
| · · · · · ·  | of the state of th | î            |
| č            | BOUNDARY CONDITION FOR P-EQUATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1            |
| č            | BOOMDARY CONDITION FOR F-EWGATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1            |
|              | C3P(1)=C3P(1)+(C3P(1))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1            |
|              | C2P(1)=C2P(1)+C1P(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |
|              | C1P(1)=0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1            |
|              | GO TO (55+56), NBCOUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1            |
|              | CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1            |
| 55           | CEXIT = 11.2*PT(NDX1)**0.715/(VOIDF(NDX1)*RHOG(NDX1)*ABED(NDX1))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |



| •               |                                                            |               |
|-----------------|------------------------------------------------------------|---------------|
|                 | C2P(NDX1) = C2P(NDX1)+C3P(NDX1)*(1+-DX*F(NDX1)*CEXIT)      | 1             |
|                 | C3P(NDX1) = 0.0                                            | Ì             |
|                 | GO TO 57                                                   | 1             |
|                 | C1P(NDX1)=0.                                               | i             |
| 20              |                                                            | 1             |
|                 | C2P(NDX1)=1.0                                              | ī             |
|                 | C3P(NDX1)=0.0 CALL LAGIN2(10.TIMET.10.2.TIME.D1PPT.POUT)   | 1             |
|                 |                                                            | î             |
|                 | D1P(NDX1)=D1PPT                                            | 1             |
|                 | CONTINUE                                                   | 1             |
|                 | CALL FDEQID(C1P+C2P+C3P+D1P+PD+NDX1)                       | i             |
|                 | DO 34 N=1 • NDX1                                           | ī             |
|                 | IF(PD(N) .LE. 0.) PD(N) = 1.E-3                            | <del>*</del>  |
| 34              | PT(N)=PD(N)                                                | 1             |
| , <b>c</b>      |                                                            | <u> </u>      |
| C               | TO CALCULATE SORBENT LOADING                               | 4             |
| C               |                                                            | 1             |
|                 | DO 30 N=1+NDX1                                             | 1             |
|                 | W(NDR4+N)=Q(NDR4+N)+D2(N)*PT(N)                            | <del>}</del>  |
|                 | DO 30 J=2+NDR4                                             | 1             |
|                 | L=NDR4+1-J                                                 | .i.           |
| 30              | W(L+N)=O(L+N)-B(L+N)*W(L+1+N)                              | <u> </u>      |
| C               |                                                            | 1             |
| c               | TO CALCULATE STREAM COMPOSITION                            | 1             |
| C               |                                                            | <u> </u>      |
|                 | FR(1+1) = 0+0                                              | 1             |
| •               | FR(2+1)=0.                                                 | 1             |
|                 | DO 31 N=1,NDX1                                             | <u> </u>      |
|                 | I=IFN(N+NDXM)                                              | 1             |
| ,               | TEMP =C(N)*VOIDF(N)                                        | 4             |
|                 | 1/P4(N)*ABED(N)                                            | <del>\</del>  |
|                 | IF(I.EQ.1)J=2                                              | 3             |
|                 | IF(I.EQ.2)J=1                                              | 1             |
|                 | IF(N . EQ. 1) GO. TO 200                                   | 1             |
|                 | FR(J+N)=FR(J+N-1)                                          | 1             |
|                 | FR(I+N)=TEMP+FR(I+N+1)                                     | 1             |
| AND LAND IN SER | IF( NDXM •EO• 0) GO TO 202                                 | 1             |
|                 | IF (I •FQ• 1) GO TO 202                                    | 1             |
|                 | 60 10 201                                                  |               |
|                 | 1:FR(1:1) = TLMP                                           | 1             |
| 202             | X(N) = 1.0                                                 | i             |
|                 | 60 TO 31                                                   | î             |
| 201             | CONTINUE                                                   | 1             |
|                 | CT=ABED(N)*DX*ASG(N)*GK(N)                                 | î             |
|                 | FRT = FR(1+N) + FR(2+N) +1-E-10                            | 1             |
|                 | X(N)=(( FR(2,N-1)+CT*PKEQ(2,W(NDR4.N),(TS(N)+0.001)))/FRT/ | 1             |
|                 | 1(1. + CT*PT(N)/FRT)+X(N))/2.                              | i             |
| . 3             | CONTINUE                                                   | 1             |
|                 | DO 33 N=1 • NDX1                                           | 1             |
|                 | C(N) = (PT(N)/RGAS/(TG(N)+460)+C(N))/2.0                   | 1             |
|                 | I = IFN (N+NDXM)                                           | 1             |
|                 | IF (I.EQ.1) J=2                                            | 1             |
|                 | 1F (1.EQ.2) J=1                                            | î             |
|                 | RHOG(N)=C(N)+(X(N)+WM(I)+(1X(N))+WM(J))                    | 1             |
|                 | UG(N)=(FR                                                  | 1             |
| =               | 1 (1.N)*WM(1)+FR(2.N)*WM(2))/RHOG(N)/ABED(N)/VOIDF(N)      | 1             |
| 3:              | 3 CONTINUE                                                 | 1             |
|                 | IF ( NTEMP .EQ. O) RETURN                                  | _ <del></del> |
| c               |                                                            | •             |
| •               |                                                            |               |



| č                                      | TO CALCULATE SORBENT TEMPERATURES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                    |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| -                                      | CALL TSORB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                    |
|                                        | CALL TGLCOL(TC+NDX1+UC+RHOC+CPC+CX+AXC+HXC+T268+TX+DX+DT+AVC+NOG) CALL HXCORE(TX+TC+TS+TG+HXC+HXS+HXG+RHOX+CPX+TKX+DX+DT+NDX1+AVX+ 1NDXM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 1 1                |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100 x 25 703 80<br>1 |
|                                        | END                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                    |
| C                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                    |
| `c                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | î                    |
| Ç                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                    |
|                                        | and the state of t | 1                    |
| -71                                    | FOR S9989 • S9989                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                    |
|                                        | SUBROUTINE PRDESB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                    |
| c                                      | COMMON /BLOK1/ ABED(41), A(41), AVC(41), CPG(41), RHOG(41),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                    |
|                                        | 1HXG(41) *HXS(41) *HXC(41) *DIF(41) *F(41) *C(41) *VS(2) *DVS(2) *DVS(2) *R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                    |
|                                        | 2S1(2,41),RHOS(2),UG(41),WM(2),UC(41),NDXM,PS(41),RHOSB(41),DS(41),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | î                    |
|                                        | 3C51(41) • C52(41) • C1(21 • 41) • C2(21 • 41) • D1(21 • 41) • D2(41) • PC1(41) • PC2(4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | . î                  |
|                                        | 411.PC3(41).ASG(41).ASX(41).AGX(41).C1P(41).C2P(41).C3P(41).D1P(41)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                    |
|                                        | 5.FR(2.41),RS(2).NDX1.NDR4.DX.DT.GK(41).DH(41).SK(41).P1(41).P2(41)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                    |
|                                        | 6.P3(41),WS(41),CR1(2,21),CR2(2,21),CR3(2,21),C3(21,411,B(21,411,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                    |
|                                        | 70(21.41).CP1(41).CP2(41).X(41).VOIDF(41).TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                    |
| *                                      | 8,AXC(41),RHOC(41),CPC(41),T268,AVX(41),TKX(41),CPX(41),RHOX(41)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -1                   |
|                                        | 9,NOG,PK(2,41),PCO21,PH2Q1,_GMR,GMW,TG1,PA,PT(41),CPS(41),HSG(41)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                    |
|                                        | COMMON /BLOK3/ W(21,41),TG(41),TS(41),TC(41),TX(41),CYCLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                    |
|                                        | COMMON /BLOK11/ TOTCO2+TOTH20+SUMPTM+WTACMS+WTSG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                    |
|                                        | COMMON /BLOK14/ NCYCLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                    |
|                                        | COMMON /BLOK16/ NDXMAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                    |
|                                        | DIMENSION AVLD(41)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                    |
|                                        | DOUBLE PRECISION C1P,C2P,C3P,D1P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                    |
|                                        | EQUIVALENCE(NDX+NDX1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                    |
| C                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                    |
|                                        | TIMEM=60.*TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |
|                                        | WRITE (6.100) NCYCLE, TIME, TIMEM, DT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                    |
|                                        | WRITE (6.101)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                    |
|                                        | WRITE (6+102)(N+PT(N)+TG(N)+TS(N)+TC(N)+TX(N)+N=1+NDX)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                    |
|                                        | FRI=FR(1=NDX)=WM(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                    |
|                                        | FRZ+FR(Z+NOX)#WM(Z)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 ,                  |
|                                        | WRITE (6+103)FR1+FR2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |
|                                        | WRITE (6+200)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                    |
|                                        | WRITE (6,201)(N,X(N),FR(1,N),FR(2,N),N=1,NDX)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                    |
|                                        | WRITE (6,202)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |
|                                        | N1*NDXM+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                    |
|                                        | NDR3=NDR4-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ţ                    |
|                                        | DO 20 N= 1, NDXM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |
|                                        | SUMMS=0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                    |
|                                        | SUMMS=SUMMS+0.5*(W(1.N)+W(NDR4.N))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1<br>1               |
| ······································ | DO 22 NR=2+NDR3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del></del>          |
| 2.2                                    | SUMMS=SUMMS+W(NR+N) AVLD(N)=SUMMS/NDR3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                    |
| 20                                     | CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                    |
|                                        | DO 30 N= N1+NDX1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |



|       | SUMMS=0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                            |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
|       | SUMMS=SUMMS+0.5*(W(1.))+W(NDR4.N))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                            |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ī .                                          |
|       | DO 33 NR=2+ NDR3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u> </u>                                     |
| .33   | SUMMS=SUMMS+W(NR+N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                            |
|       | AVLD(N)=SUMMS/NDR3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                            |
| 30    | CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                            |
|       | SUM=0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                            |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ï                                            |
| er er | DO 31 N= 1. NDXMAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •                                            |
| 31    | SUM= SUM+AVLD(N)*ABED(N)*DX*RHOSB(N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <u> </u>                                     |
|       | AVMSLD = SUM/WTACMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                            |
|       | SUM=0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                            |
|       | DO 32 N= N1+NDX1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                            |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>                                     |
| 32    | SUM = SUM+AVLD(N)*ABED(N)*DX*RHOSB(N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                            |
|       | AVSGLD=SUM/WTSG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                            |
|       | DO 10 N=1,NDX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <u>1                                    </u> |
| 10    | WRITE (6,203)N; AVLD(N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 .                                          |
| • •   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                            |
| •     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ī                                            |
|       | WRITE (6.205) AVMSLD. AVSGLD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u> </u>                                     |
|       | AVRCO2=TOTCO2/TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | I                                            |
|       | AVRH2O=TOTH2O/TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                            |
|       | WRITE(6,204) AVRCO2,AVRH20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                            |
|       | RETURN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                            |
|       | NE TONG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ī                                            |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |
| 100   | FORMAT (1H1+16HDESORPTION CYCLE 13/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u> </u>                                     |
|       | 1 3X.5HTIME=.F9.5.1X2HHR.F12.3.1X.3HMIN.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                            |
| •     | 1 5X • 15HTIME INCREMENT = F7 • 5 • 1X2HHR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                            |
| 1.01  | FORMAT (//2X . 1 OHAXIAL NODE . 10X . 14HTOTAL PRESS . MM . 6X . 14HGAS TEMP . DE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                            |
|       | 16 F.5X.19HSORBENT TEMP. DEG F.2X.18HGLYCOL TEMP. DEG F.3X.19HHX CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                            |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>†</b>                                     |
|       | 2RE TEMP. DEG F )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                            |
|       | FORMAT(/(I9+11X+5(F14+4+6X)))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <u> </u>                                     |
| 103   | FORMAT (/21HOCO2 DESORPTION RATE=F7.44.1X5HLB/HR.5X.20HH2O DESORPTI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                            |
|       | 10N RATE = F7.4.1X5HLB/HR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                            |
| 200   | FORMAT (1H0/2X,10HAXIAL NODE,13X,9HMOLE FRAC,7X,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                            |
|       | 12X.13HCQ2 RATE.M/HR.6X.13HH2Q RATE.M/HR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                            |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                            |
|       | FORMAT(/(19+11X+3(4X+F12+6+4X)))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                            |
| 202   | FORMAT (// 31HOLOADING AT INTERIOR OF SORBENT//4X+4HSORB/4X+4HNOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u>,1</u>                                    |
|       | 1E,3X, 3HAVG, 9X,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                            |
|       | 1 1H1.9X.1H2.9X.1H3.9X.1H4.9X.1H5.9X.1H6.9X.1H7.9X.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                            |
|       | 2148,9X,149,8X,2410,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                            |
|       | 28X+2H11/6H AX1AL/5H NODE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                            |
| 200   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                            |
|       | FORMAT ( 15,4X,12(F6,4,4X))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u>.</u>                                     |
| 204   | FORMAT(/27H0TIME AVG CO2 DESORP_RATE =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                            |
|       | 1 F8.4. 6H LB/HR .10X.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                            |
|       | 227H TIME AVG H20 DESORP RATE =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                            |
|       | 3 F8.4. 7H LB/HR )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                            |
|       | The state of the s | 3                                            |
| 205   | FORMAT(/// 30H AVG CO2 LOADING IN M.S. BED = F8.4.1X.5HLB/LB.7X.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                            |
|       | 130H AVG H20 LOADING IN S.G. BED = F8.4, 6H LB/LB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                            |
|       | END                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                            |
| C     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                            |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | i                                            |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                            |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del></del>                                  |
| -I FC | DR 59997•59997                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                            |
|       | SUBROUTINE TSORB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | I                                            |
|       | COMMON /BLOK1/ ABED(41) • A(41) • AVC(41) • CPG(41) • RHOG(41) •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                            |
|       | 1HXG(41) *HXS(41) *HXC(41) *DIF(41) *F(41) *C(41) *VS(2) *DVS(2) *DVS1(2) *R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                            |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ţ.,                                          |
|       | 251(2+41) • RHOS(2) • UG(41) • WM(2) • UC(41) • NDXM • PS(41) • RHOSB(41) • DS(41) •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                              |
|       | 3CS1(41)+CS2(41)+C1(21+41)+C2(21+41)+D1(21+41)+D2(41)+PC1(41)+PC2(4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u> </u>                                     |
|       | 41) •PC3(41) •ASG(41) •ASX(41) •AGX(41) •C1P(41) •C2P(41) •C3P(41) •D1P(41)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                            |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4                                            |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |



```
5.FR(2.41).RS(2).NDX1.NDR4.DX.DT.GK(41).DH(41).SK(41).P1(41).P2(41)
 6.P3(41).WS(41).CR1(2.21).CR2(2.21).CR3(2.21).C3(21.41).B(21.41).
 70(21-41) + CP1(41) + CP2(41) + X(41) + VOIDF(41) + TIME
 8.AXC(41).RHOC(41).CPC(41).T268.AVX(41).TKX(41).CPX(41).RHOX(41)
  9•NDG+PK(2+41)+PCO21+PH2O1+ GMR+GMW+TG1+PA+PT(41)+CPS(41)+HSG(41)
  COMMON /BLOK3/ W(21+41) +TG(41) +TS(41) +TC(41) +TX(41) +CYCLE
  COMMON /BLOK8/ DTO.TS1(41).TS2(41).TX1(41).TX2(41).TC1(41).TC2(41)
  DOUBLE PRECISION C1P+C2P+C3P+D1P
  DIMENSION $1(41) . $2(41) . $3(41) . B1(41)
  RATIO = (DT+DTO)/DT
  DO 10 N=1-NDX1
  CS1(N)=RATIO*CS1(N)
  CS2(N)=RATIO*CS2(N)
  T = (DT+DTO) /CPS(N)/RHOSB(N)
  T1=0.5*T*(ASG(N)*HSG(N)+ASX(N)*HXS(N))
  BI(N) =TS2(N)+CS1(N)*PT(N)-CS2(N)*(P1(N)+P2(N)*(W(NDR4+N)-WS(N))+
  1P3(N) *PT(N))+T*(ASG(N)*HSG(N)*TG (N)+ASX(N)*HXS(N)*
                                                   TX1(N))-T1*T52(N)
  S1(N)=-T*SK(N)/DX/DX
  S2(N)=1.-2.*S1(N)+T1
  S3(N)=S1(N)
10 CONTINUE
  $2(1)=$2(1)+$1(1)
   51(1)=0.0
  S2(NDX1)=S2(NDX1)+S3(NDX1)
   53(NDX1)=0.
  NSG=NDXM+1
   S2(NDXM) = S2(NDXM) + S3(NDXM)
   53(NDXM)=0.
   52(NSG) = S2(NSG) +S1(NSG)
   51(NSG)=0.0
   CALL FDEQIM(S1.52.53.B1.TS.NDX1)
  RETURN
   END
    FOR $9986 $9986
   SUBROUTINE GAST (DX. RHOG. CPG. U. TS. TX. NDX1. ASG. HSG. AXG. HXG. TG. YOIDF
  DIMENSION RHOG(1) *CPG(1) *U(1) *TS(1) *TX(1) *TG(1) *ASG(1) *HSG(1) *HXG(
  11) . VOIDF(1) . AXG(1)
   W=1.0
   N2= NDX1-1
   TG(1)=TS(1)
   DO 10 N= 1 + N2
   F= 0.5*(VOIDF(N)+ VOIDF(N+1))
   AS1 # ASG(N+1)
   HSI=HSG(N+1)
   AXI = AXG(N+1)
   HX1-HXG(N+1)
   CP1=CPG(N)
   RO = 0.5*(RHOG(N)+RHOG(N+1))
   U1= 0.5#( U(N)+U(N+1))___
   TS1=TS(N+1)
   TX1=TX(N+1)
   C1=1+/(F*RO*CP1*U1)
   D=C1*(AS1*HS1*TS1+AX1*HX1*TX1)
   A=(AS1*HS1+AX1*HX1)*C1
                                                                                           1
10 TG(N+1) = ((1 * /DX-A+(1 * -W)) + TG(N) + D) / (1 * /DX+A+W)
```



```
END
C
Ç
Ć
            59992 + 59992
     FOR
-TI
       FUNCTION PREGIID . W.T)
      PKEO=EQUILIBRIUM PRESSURE IN MM HG
C
       ID=2.H20 ON SILICA GEL
C
       ID=1+CO2 ON MOLECULAR SIEVE
C
       W-LOADING IN LB ADSORBATE PER LB ADSORBENT
C
       TATEMP IN DEG F
       IF (W .LE. 0. ) W= 1.E-5
       GO TO (1+2) + ID
     1 PKEQ=EXP(-9166.56/(T+460.)+1.678*ALOG(W)+23.823)
       RETURN
     2 CONTINUE
       SLOG = ALOG(W)
       P1= -1.075E4*(0.852-0.03215*SLOG)/(T+460.) + (-0.0592*SLOG+0.394)
      1 *SLOG+21.08
       PKEQ=EXP(P1)
       RETURN
       END
C
C
        FOR $9991.59991
       SUBROUTINE HXCOREITX , TC , TS , TG , HXC , HXS , HXG , RHOX , CPX , TKX , DX , DT , NDX , A
      1VX +NDXM)
       DIMENSION TX(1) .TC(1) .TS(1) .TG(1) .HXC(1) .HXS(1) .HXG(1) .RHOX(1) .
      1CPX(1)+TKX(1)+AVX(1)
       DIMENSION C1(41) + C2(41) + C3(41) + D1(41)
       COMMON /BLOK8/ DTO. TS1(41). TS2(41). TX1(41). TX2(41). TC1(41). TC2(41)
       DN=DT+DTO
       DO 10 N=1+NDX
       T1= AVX(N) * (HXC(N) +HXS(N) +HXG(N)) *0.5
       C1(N) =-TKX(N)/DX/DX
       C3(N) = -TKX(N+1)/DX/DX
    C2(N)= RHOX(N)*CPX(N)/DN -C1(N) - C3(N) + T1
10 D1(N) = RHOX(N)*CPX(N)/DN*TX2(N) + AVX(N)*(HXC(N)
       1#TC1(N) + HXS(N) *TS1(N) + HXG(N) *TG(N) - T1*TX2(N)
        C2(1)=C2(1)+C1(1)
        C1(1)=0.
        C2(NDX)=C2(NDX)+C3(NDX)
        C3(NDX)=0.0
        CALL FDEQIMIC1 +C2+C3+D1+TX+NDX)
        RETURN
        END
 C
 C
         FOR $9987+$9987
 -1
        SUBROUTINE TGLCOLITC+NDXMAX+UC+RHOC+CPC+CX+AXC+HXC+T268+TX+DX+DT+
       1AVC. NOGLINI
        DIMENSION C1(30)+C2(30)+C3(30)+D(30)+TC(1)+TX(1)+HXC(1)+AVC(1)
        DIMENSION UC(1) . RHOC(1) . CPC(1) . AXC(1)
        COMMON /BLOK8/ DTO.TS1(41).TS2(41).TX1(41).TX2(41).TC1(41).TC2(41)
```

|              | DN=DT+DTO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
|              | DO 10 N#1.NDXMAX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1              |
|              | CC1=-UC(N) CC2=HXC(N)/(CPC(N)#RHOC(N))#AVC(N)#0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |
|              | TEL HICKN AGT OAL GO TO 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |
|              | The oction age and so in a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | I              |
|              | C3(N)=-CC1/DX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |
| 1            | C2(N)=1./DN+CC2-C3(N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •<br>!         |
|              | C1(N)=0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |
|              | 60 70 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u> </u>       |
| 5            | C1(N) = CC1/DX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u>i</u>       |
|              | $C_2(N) = 1 \cdot /DN + CC_2 - C_1(N)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | į.             |
|              | $C_3(N) = 0.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1              |
| 10           | D(N)=TC2(N)/DN+CC2*TX1(N)+2 CC2*TC2(N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | i              |
| 10           | CI(NOGLIN) = 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 '            |
| •            | C3(NOGLIN) = 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1              |
|              | DINOGLINI = DINOGLINI +ABSIUC (NOGLINI) /DX*T268                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1              |
| •            | CALL FDEQIM(C1+C2+C3+D+TC+NDXMAX)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ī              |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1              |
|              | RETURN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1              |
| *            | END The state of t | 1              |
| C            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •              |
| C            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1              |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1              |
| -T1          | FOR S9981+59981                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1              |
|              | FUNCTION IFN(N.NDXM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1              |
|              | 1FN=1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1              |
|              | IF(NoGToNDXM)IFN=2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1              |
|              | RETURN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1              |
|              | END                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1              |
|              | ENU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1              |
| Ç.           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1              |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | î              |
| C            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ī              |
| -LI          | FOR 59984 • 59984                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | i              |
|              | SUBROUTINE FDEQIM(C1+C2+C3+D+VAR+NN)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | . <del>4</del> |
|              | DIMENSION C1(1) • C2(1) • C3(1) • D(1) • VAR(1) • B(30) • Q(30)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .1             |
|              | NN1=NN-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1              |
|              | B(1)=C3(1)/C2(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1              |
|              | DO 41 J=2 • NN1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1              |
| 41           | B(J) = C3(J)/(C2(J) - C1(J) + B(J-1))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1              |
| •            | Q(1)=D(1)/C2(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1              |
|              | DO 42 J=2.NN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1              |
| . 45         | Q(J)=(D(J)-C1(J)*Q(J-1))/(C2(J)-C1(J)*B(J-1))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1              |
| 77.6         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1              |
|              | VAR(NN)=Q(NN)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1              |
|              | DO 43 J=2+NN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ī              |
|              | L=N+1-J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1              |
| 43           | VAR(L)=Q(L)-B(L)#VAR(L+1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .4             |
|              | RETURN •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •              |
|              | END                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |
| c            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>       |
| C            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | I.             |
| C ,          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1              |
| -T1          | FOR 59985 • S9985                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1              |
|              | SUBROUTINE FDEGID(C1.C2.C3.D.VAR.NN)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1              |
|              | DIMENSION C1(1)+C2(1)+C3(1)+D(1)+VAR(1)+B(30)+Q(30)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -1             |
|              | DOUBLE PRECISION C1+C2+C3+D+VAR+B+Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1              |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1              |
| * ·          | NN1=NN-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1              |
| 9.0          | B(1)=C3(1)/C2(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | î              |
|              | DO 41 J=2+NN1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1              |
| , <b>4</b> . | L B(J)=C3(J)/(C2(J)-C1(J)+B(J-1))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | *              |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |



|            | 0(1)=0(1)/C2(1)                                               |                                                                                                                |
|------------|---------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
|            | DO 42 J=2+NN<br>Q(J)=(D(J)-C1(J)*Q(J-1))/(C2(J)-C1(J)*B(J-1)) |                                                                                                                |
|            | 1                                                             |                                                                                                                |
|            | VAR(NN)=Q(NN)                                                 |                                                                                                                |
|            | DO 43 J=2+NN<br>L=NN+1-J                                      | ·<br>                                                                                                          |
|            | VAR(L)=Q(L)-B(L)*VAR(L+1)                                     |                                                                                                                |
| 4.2        | RETURN                                                        |                                                                                                                |
|            | END                                                           | Salar Sa |
| c          |                                                               | •                                                                                                              |
| č          |                                                               | •                                                                                                              |
| č          |                                                               | · · · · · · · · · · · · · · · · · · ·                                                                          |
| -1         | FOR \$9996 \$9996                                             | •                                                                                                              |
| -          | SUBROUTINE LAGINZ(ID+X+NP+ND+XO+YO+Y)                         |                                                                                                                |
| C          | REVISED FOR FORTRAN IV 8-8-65 S. WONG                         | · · · · · · · · · · · · · · · · · · ·                                                                          |
|            | DIMENSION X(2) Y(2)                                           |                                                                                                                |
| i <u>c</u> | $oldsymbol{i}$                                                |                                                                                                                |
|            | 1LO=1                                                         | <u> </u>                                                                                                       |
|            | IF(X0-X(1))10+16+4                                            | ĺ                                                                                                              |
|            | TF(X0-X(NP))19+13+7                                           |                                                                                                                |
|            | ILO=NP-1                                                      | l                                                                                                              |
| 10         | IHI*ILO+1                                                     | 1                                                                                                              |
|            | WRITE (6+1) 1D+XO                                             | 1                                                                                                              |
|            | GO TO 46                                                      | 1                                                                                                              |
|            | ILO=NP                                                        | 1                                                                                                              |
| 1/         | YO*Y(ILO) RETURN                                              | <u> 1                                    </u>                                                                  |
|            | DO 22 1LO = 2 + NP                                            | 1                                                                                                              |
|            | 1L0=1L0                                                       | 1                                                                                                              |
|            | 1F(XO-X(1LO))25:16:22                                         | <u> </u>                                                                                                       |
| 2          | CONTINUE                                                      | 7                                                                                                              |
|            | 5 IHI=ILO                                                     | ,i                                                                                                             |
|            | 1[0=1HI-1                                                     | 1                                                                                                              |
|            | 1F(ND-2146,46,28                                              | 1                                                                                                              |
| 2          | 3 DO 43 I=3,ND                                                | 1                                                                                                              |
|            | IF(ILO-1)40,40.31                                             | 1                                                                                                              |
| 3          | I IF(IHI-NP)34+37+37                                          | î                                                                                                              |
|            | 4 IF (2. *XO-X(ILO-1)-X(IHI+1)) 37+37+40                      | ī                                                                                                              |
| 3          | 7 1L0=1L0-1                                                   | 1                                                                                                              |
|            | GO TO 43                                                      | .1                                                                                                             |
|            | 0 [HI*[HI+]                                                   | 1                                                                                                              |
|            | 3 CONTINUE<br>6 YO=0.0                                        | 1                                                                                                              |
| •          | PN=1.0                                                        | 1                                                                                                              |
|            | DO 49 I=ILO+IHI                                               | <u> 1                                   </u>                                                                   |
|            | 9 PN=PN*(XO-X(1))                                             | 1                                                                                                              |
| `          | 00 58 I=ILO+IHI                                               | 1                                                                                                              |
|            | P=PN/(X0-X(1))                                                | <u>_</u>                                                                                                       |
|            | DO 55 J=ILO.IHI                                               | 1                                                                                                              |
|            | IF(J-I)52,55,52                                               | 1                                                                                                              |
|            | 2 P=P/(X(1)-X(J))                                             | 3                                                                                                              |
|            | 5 CONTINUE                                                    | 1                                                                                                              |
| ,          | YO=YO+P#Y(1)                                                  | 1                                                                                                              |
|            | 8 CONTINUE                                                    | 1                                                                                                              |
|            | RETURN                                                        | î                                                                                                              |
|            | 1 FORMAT (97X+7HLAGIN2 +14+E12+5)                             | 1                                                                                                              |
|            | END                                                           | _ <del></del>                                                                                                  |